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Purpose  

Agro-Tech utilizes GenStat® software for the analysis of data from agricultural field 

experiments.  This document is a training manual used to guide staff through a design approach 

to the analysis of the data using GenStat.  Data sets from Gomez and Gomez (1994) are used to 

illustrate the analysis. 

The goal of this manual is the following: 

 Introduce ANOVA and limitations of this technique. 

 Introduce the history and philosophy behind GenStat software. 

 Understand the concept of partitioning sources of variation into stratum. 

 Understand block and treatment structure and its relationship to the GenStat ANOVA 

procedure. 

 Construct models (via the treatment and block and structure) to create ANOVA tables. 

 Train staff with analysis of common treatment and experimental designs used in field 

plot research and ANOVA techniques via GenStat software.   

 The following are covered in this manual. 

 

Treatment designs: Single factor, two or more factors in factorial combinations 

Experimental designs: CRD, RCB, Latin Square, split-plot, strip-plot, split-split plot & 

strip-split plot 

 

 

 

 

 

 

GenStat is widely used for the analysis of data for agricultural field experiments. 
GenStat has a strong agricultural following in Europe, Australia and New Zealand. 
It is a very powerful and dependable product for designed experiments and 
agricultural research.  
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Forward 

ANOVA 

Modern research is concerned with the detection of small differences. This requires the use of 

efficient designs and methods that will most effectively reduce experimental error to obtain 

reliable results. In 1923, through a manure trial on potatoes, Fisher introduced the analysis of 

variance (ANOVA). Since then ANOVA became institutionalized as the standard of what is 

commonly accepted as standard statistical analysis for experimental research data. This idea 

remains firmly in place today (Stroup, 2013).  

The analysis of variance does the following in a systematic way (Peterson, 1994). 

 Partitions the total variation in the data into components associated with such sources 

of variation as error, treatments, and grouping categories (blocks). 

 Provides an estimate of experimental error that can be used to construct interval 

estimates and significance tests. 

 Provide a format to test the significance of several variation sources in the partition. 

Sir Ronald Fisher said the analysis of variance (ANOVA) is not a mathematical theorem but 

rather a convenient method of arranging the arithmetic.  However, it may be more insightful to 

understand ANOVA as a thought process of how data has arisen rather than just a process of 

arithmetic.  Historically these computations were completed by hand calculations and the 

construction of the ANOVA table. Today ANOVA analysis is completed by algorithms built into 

the statistical software. 

This manuals focus is analysis of variance using GenStat® software which will prove to be a 

valuable tool for the field agronomist. Knowing where the numbers come from can be 
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invaluable for better understanding the ANOVA table and analysis.  We refer you to Gomez 

(1994) for a presentation of the mathematical calculations involved in the analysis of the data 

presented. 

Limitations of ANOVA 

This manual focuses on traditional ANOVA methods which have limitations. It assumes that 

data have approximate normality, independent observations and common variance. When it 

does not, a variance-stabilizing transformation has traditionally been used 

In practice, common variance is often not the case and data and non-normal distributions are 

common. This includes spatial data and temporal data, data involving discrete, categorical or 

courteous response variables, multi-location and multi-year data, and repeated measures 

(Guber, et al, 2012, Lee, et al 2007, Stroup, 2012).  

Today, more sound approaches are available for the analysis of such data.  In such cases, a 

generalized linear mixed models approach is preferred and is available in GenStat’s regression 

and Mixed Models menu.  

Although Linear Mixed Models (LMM) are very flexible, it should be noted that it is easy to fit a 

wrong model and obtain misleading results with LMM.  As the models becomes even more 

complex (Generalized Linear Mixed Models), so does the danger of misspecification of the 

model. 

Mixed model analysis is not the objective of this manual. Nevertheless, an understanding of 

ANOVA and the underlying blocking and treatment structures is essential to the mixed 

modelling process and the transition to this type of analysis. 
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History of GenStat 

In 1843, John Bennet Lawes founded the Rothamsted experiment station to investigate the 

impact of inorganic and organic fertilizers on crop yield. Lawes was an entrepreneur and 

scientist who founded one of the first artificial fertilizer manufacturing facilities in 1842. Laws 

appointed a young chemist named Joseph Henry Gilbert and launched the first of a series of 

long-term field experiments. Over the next 57 years, Lawes and Gilbert established the 

foundations of modern scientific agriculture and the principles of crop nutrition. 

Rothamsted pioneered the application of statistics in biological research when Sir Ronald Fisher 

was appointed in 1919 to study the accumulated results of Broadbalk, the oldest continuous 

agronomic experiment in the world. Fisher realized the need for improved statistical techniques 

over the whole range of agricultural and biological research, and the groundwork for modern 

applied statistics was laid by him and his colleagues during the 1920s and 1930s. 

Statistical computing began at Rothamsted when Fisher’s successor Frank Yates obtained an 

Elliot 401 computer – one of the first computers to be used away from its manufacturing base, 

and one of the first to be used for statistical work. This extended the tradition, started by 

Fisher, of conducting statistical research to solve real problems arising from biological research. 

The resulting new methods could now be implemented in the Rothamsted statistical programs 

to enable them to be used more effectively in practice. The development of GenStat at 

Rothamsted began in 1968, when John Nelder took over from Yates as Head of Statistics. Roger  

Payne took over leadership of the GenStat in 1985. Currently GenStat is being developed and 

marketed by VSN International (VSNi) as a spin-off company from Rothamsted and NAG 
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(Numerical Algorithms Group). The development group has retained its close links with the 

research community and Rothamsted (VSNi, 2014). 

Why GenStat 

The following attributes make GenStat a very useful, productive, and economical tool for the 

analysis of agricultural experiments. 

 Provides a flexible system for analysing experimental data through its ANOVA, 

regression and REML facilities. 

 The ANOVA is very powerful and can analyse nearly all balanced standard designs. 

 Uses the concept of strata and uses the correct mean square for computing F-tests. 

 It prints ANOVA tables in the conventional form you find in statistical text books. 

 Contains cutting edge statistical methods that can be accessed through a menu system 

or a programming language. 

 Has a powerful spreadsheet which allows for easy data entry, import, export and 

manipulation of data. 

 Has effect algorithms that allow for quick creation of different experimental designs, 

exploration of data, analysis and printout. 

 Implements good statistical practices through an intelligent menu system and 

comprehensive suite of diagnostic messages. 

 Allows quick formation of summary tables and graphics for data visualization. 

 It excels in its ability to handle multiple sources of variation which is the key to 

agricultural experimentation.  

 

 

 

The development of GenStat can be traced back to the Rothamsted 
Experiment Station in England, one of the oldest agricultural research 
institutions in the world. 
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Multi-Stratum ANOVA 

The multi-stratum analysis of variance is a leading principle behind the analysis agricultural 

data and is fundamental to understanding design itself.  This tradition in design and analysis is 

taught at Rothamsted Research, implemented in GenStat, and utilized at Agro-Tech.   A recent 

book, “Statistical methods in biology”, gives a detailed explanation of this and other approaches 

(Welham et al, 2015).  This reference was used in the construction of the following training 

document. 

In a statistical way of speaking we structure our trials into strata to minimize the heterogeneity 

of error (maximize soil uniformity) within blocks.  We may further structure our trials to 

accommodate equipment used to apply treatments.  Consequently, restrictions are imposed on 

layout of an experiment every time we design and conduct an experiment.  These restrictions 

create different structural sources of variability among the experimental units called strata.  

Each restriction in the structure of an experiment is called a stratum. 

The multi-stratum ANOVA accounts for the physical structure of the experimental material or 

blocking imposed by the experimenter.  It is an analysis approach that creates an ANOVA table 

with separates components for each strata defined by the structural component (block model 

or block structure).  The variation within each stratum is partitioned into the sums of squares 

associated with the treatments that vary between the units at that level of the design and a 

residual term.  

Strata are the different structural sources of variability among the experimental 
units. 
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The great advantage of the multi-stratum ANOVA is the recognition of the interplay between 

blocking and treatment structure so that treatment effects are always allocated to the correct 

strata so appropriate variance are calculated  

There is an old adage in statistics, “as the randomization is, so should the analysis be” (Pearce, 

1988).  The GenStat ANOVA algorithm is true to this idea as it is a design based analysis.  This is 

a natural approach to the analysis of data from agricultural field experiments.  Very few 

software packages are available that create multi-stratum ANOVA tables.   

A multi-stratum ANOVA table is not without limitations.  It can only be formed when the 

explanatory and structural component obey certain conditions of balance.  The simplest case of 

this occurs with block and treatment factors are orthogonal as in a RCB design.  Although 

GenStat implicitly identifies terms in the structural component of the model as random, they 

are calculated by least square estimates as if they were fixed terms.  

 “The long and short of the multi-stratum ANOVA is that if you’ve specified you structure 

correctly then treatment terms get tested at the correct level of structure.  If you are not using 

a multi-stratum ANOVA table or do not know how your software computes the F test’s, working 

out estimated means squares is essential” (S.J.  Welham, personal, communication, 2015).   

 

For mixed models (those with both random and fixed effects) the REML facilities 
should be used. 
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Visualizing STRATA in a Field Experiment 

The reason of concerning ourselves with the concept of strata in experimental design is to 

accommodate and adjust for field variation and treatment application through blocking.  Think 

of strata in terms of structural restrictions imposed on the experimental units in a field.  
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Comparison of a simple ANOVA table and GenStat’s Multi-Stratum 
ANOVA table. 

Analysis of variance  
 
 
Simple ANOVA Table (RCBD). 
 
Variate: Yield 
 
Source of variation     d.f.       s.s.       m.s.    v.r.  F pr. 
Block                    3   1944361.    648120.    5.86 
Treatment                  5   1198331.    239666.    2.17  0.113 
Residual                  15   1658376.    110558. 
 
Total                     23   4801068. 
 

A simple ANOVA does not make any distinction between describing the underlying structure of 
the data and those indicating the treatments applied. 
 
 
Multi-Stratum ANOVA (RCBD).  
 
 
Variate: Yield 
 
Source of variation     d.f.       s.s.       m.s.    v.r.  F pr. 
 
Block stratum              3   1944361.    648120.    5.86 
 
Block.Plot stratum 
Treatment                  5   1198331.    239666.    2.17  0.113 
Residual                  15   1658376.    110558. 
 
Total                     23   4801068. 
 

The multi-stratum ANOVA table for the RCBD rearranges the simple ANOVA table to reflect the 
structure of the experiment. The RCBD has two distinct stratum, a Block stratum and a 
Block.Plot stratum. 

 

The multi-stratum ANOVA table is a general ANOVA table that preserves the 
distinction between the terms describing the underlying variability structure of 
the data (block structure) and those indicating the treatments applied (treatment 
structure). 
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Setting up the model 

The GenStat model consist of two formulas.  The first formula is the structural component 

(block structure) which describes the way the experimental units are established in the field 

before you apply the treatments.  

The second formula is the explanatory component (treatment structure) which describes 

exactly what treatments are applied to the experimental units, and (possibly) sets up specific 

questions to be answered in the analysis, for example whether there is a linear trend in yield 

with increasing amounts of a fertilizer.  

These structures are derived through a combination of identifiers (terms) and operators 

called the model formula.    A model formula is a list of identifiers (name given the data 

structure within program) and operators defining the model terms to be analysed. The 

operators proved a convenient way of stating a model in a compact form.  The two most 

common relationships between terms (factors) are nested and crossed structures.  

The / (forward slash) operator indicates a nested relationship.  This is a hierarchical 

relationship where multiple units of one structural level are entirely contain within unit at a 

higher level. 

 Block/plot = Block + Block.Plot   (Blocks and plots within blocks) 

The * (star) operator indicates a crossed relationship.   

Variety * Fertilizer = Variety + Nitrogen + Variety.Fertilizer 
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Commonly Used Operators 

Operators 

Addition operator (+)  A+B+C main effects of A, B, and C 

Interaction operator (.) A.B interaction of A and B 

Crossing operator (*)  A*B is equivalent to A+B+A.B 

Nesting operator (/)  A/B is equivalent to A+A.B 

 

STRUCTURAL AND EXPLANATORY COMPONENT EXAMPLES 

Example:               Structural Components   Explanatory Component 

CRD:                      None used     Treatment 

RCBD:                    Block/Plot     Treatment 

Latin Square:        Row*Column    Variety 

Split Plot:              Block/W_Plot/S_Plot   Variety*Nitrogen 

Strip Plot:             Block/(W_Plot1*W_Plot2)   Nitrogen*Variety 

Split Split Plot:     Block/W_Plot/S_Plot/SS_Plot  Nitrogen*Management*Variety 

Strip-Split Plot:    Block/( Row*Column)/PlantingMethod       Variety*Nitrogen*PlantingMethod 

 

 

 

 

 

One of Genstat’s noted achievements is that it incorporated John Nelder’s theory 
of balance into Graham Wilkinson algorithm, and pushed this concept to the 
limit.    

In summary, it puts all the work of Fisher, Yates and Finney into a single 
framework so that any design can be described in terms of two formulas (Senn, 
2003).  

This made it possible to retain the conceptual simplicity of ANOVA type strata in 
the analysis, which is very intuitive for those analyzing designed experiments. 
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Completely randomized design 
 

These concepts, and the way that the block and treatment structures are completed, are best 

described through simple examples. 

Table 1.1 Data from Page 14 of Gomez and Gomez: grain yields (kg ha-1) of rice resulting 
from different foliar and granular insecticides for the control of brown plant hoppers and 
stem borers, from a CRD experiment with 4 (r) replications and 7 (t) treatments 

 Replicate 
Treatment 1 2 3 4 
Azodrin 2387 2453 1556 2116 
Control 1401 1516 1270 1077 
DDT + -BHC 2536 2459 2827 2385 
Dimecron-Boom 1997 1679 1649 1859 
Dimecron-Knap 1796 1704 1904 1320 
Dol-Mix (1 kg) 2537 2069 2104 1797 
Dol-Mix (2 kg) 3366 2591 2211 2544 

 

How did this data set come about? One scenario is this. The experimenters had 28 plots on 

which the same variety of rice was grown. Every plot had roughly the same growing conditions. 

Four of the 28 plots were randomly selected to have Azodrin applied, another four plots were 

randomly selected to be untreated (the Control treatment), and so on. 

So for this simple design there is just one simple treatment structure consisting of six different 

insecticides plus a control. The grain yields would have to be stacked in one column (which is a 

variate, that is a column that just contains numeric data) in a GenStat spreadsheet, alongside of 

which would be a second column identifying which of the 7 “treatments” had been applied to 

the plot that produced that grain yield. This column could be named simply Treatment or 

Insecticide, and would have to be declared a factor in GenStat: this is a column that simply 
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contains different levels – in this case the 7 different insecticides (or control) applied to the rice 

plots. GenStat indicates a factor by placing a red exclamation mark to the left of the column 

name. 

 

GenStat has several ways of completing the analysis of this data set. In Stats > Analysis of 

Variance you can select Completely Randomized Design, One-way (no blocking) or General 

Analysis of Variance from the drop down menu alongside Design: They all produce the same 

analysis. All you need to enter is the response variate to be analyzed (we’ve named it Yield) and 

the treatment structure which is simple in this case.  
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The term One-way in the middle menu simply refers to the number of treatment factors in the 

experiment, in this case just one. There are no blocks in this example: the 7 treatments were 

allocated randomly to the 28 plots in the field, four replicates per treatment. Note that when 

we click inside the Y-Variate box, only potential variates are listed, not factors. In the Treatment 

Structure box, however, both factors and variates are listed because both treatments (which are 

factors) and covariates can be selected for analysis. 

The General Analysis of Variance menu can be used for any design no matter how complex, so 

it is worth spending a little time to understand the various strata in an analysis. 

The Block Structure in this menu was left blank simply because there are no blocks in this 

example. However we could have filled this in, but we need to think through the model before 

we discuss how. 

Rice grown on the plots used in this experiment will produce some mean yield. We expect a 

treatment effect (or else why run the experiment?). That is, plots that are treated are likely to 

produce on average more than plots that are untreated, and whether the use of foliar or 

granular insecticides is better can be determined by the experimental outcome.  
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In summary, for this simple experiment, every yield can be expressed in a simple model: 

Yield = overall mean + individual treatment effect + error 

The error for each plot simply allows for individual yield variation. There are 28 plots, so 

underlying the data vector in GenStat is an error vector with 28 random error terms that allow 

individual plots to be slightly different from what would theoretically be expected. These errors 

are assumed to have the same distribution: they are all normally distributed, independent (in 

the sense that one plot does not affect nor is affected by another plot – can this assumption be 

reasonable in a field trial? – more of this later), and theoretically they all have 0 mean and a 

common variance which is often labelled 2. 

Moreover, the 28 plots are the replicates for the treatments, and, for a completely randomized 

design, what GenStat requires on the Block Structure is a factor (or combination of factors) that 

indexes through all 28 plots. This could be done in one of two ways: 

1. A factor named (say) Reps could be inserted into the spreadsheet consisting of 28 levels 

and whose rows take values 1, 2, …, 28. Reps would be entered as the Block Structure. 

 

2. A factor named (say) Rep could be inserted into the spreadsheet consisting of 4 levels 

and whose rows take values {1, 2, 3, 4} repeated 7 times. Then you would combine the 

two factors Rep and Treatment as the Block Structure using GenStat’s convention 

Rep.Treatment (1 to 4 times 1 to 7 producing the required 28 plot identifiers) 
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So the Block Structure in the General Analysis of Variance menu can either be left blank for a 

completely randomized design, or be filled with either of these two structures: 

 

 

 

This demonstrates a general GenStat convention. There is only one plot shape in the field for 

this experiment, and hence only one stratum in the analysis of variance. We don’t actually need 

to enter the plot structure in this example. The convention for more complex designs is this: 

The final stratum can always be omitted in a GenStat Block Structure simply 
because GenStat will always add one in if we do not. So now we turn to the 
output from the Analysis of Variance of the rice yields. 
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Why Analysis of variance? 

First, go back to the data and simply calculate the sample variance of the 28 rice grain yields. 

You can do this is Excel or in GenStat. In Excel, you would use the following formulae (and 

suppose the array of rice yields is named Yield): 

=AVERAGE(Yield) for the mean 

=VAR(Yield)  for the usual sample variance 

=STDEV(Yield)  for the usual standard deviation 

In GenStat, the simplest menu is found in Stats > Summary Statistics > Summary Statistics… 

 

You would obtain a sample variance of 280,645. A sample variance of n data values has (n-1) df 

(degrees of freedom) - because once you subtract the mean from each data value, the new 

values add to 0 so there is one restriction governing them. So for our 28 grain yields the sample 

variance has 27 df. 
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Now look at GenStat’s default output, the first part of which is the traditional ANOVA table 

found on Page 16 of G&G: 

Analysis of variance 
  
Variate: Yield 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Treatment 6  5587175.  931196.  9.83 <.001 
Residual 21  1990238.  94773.     
Total 27  7577412.        

GenStat uses s.s. for Sum of Squares, m.s. for Mean Square and v.r. (variance ratio) where G&G 

uses Computed F. GenStat also provides the P value (labelled F pr.) used for assessing the 

hypothesis that all treatment means are equal (or, in terms of our model formulation, that all 

treatment effects are zero).  

To explain further, a mean square is simply the sum of squares divided by its degrees of 

freedom 

𝑚. 𝑠. =
𝑠. 𝑠.

𝑑𝑓
 

and the computed F, or v.r., is the ratio of the Treatment Mean Square to the Residual Mean 

Square 

𝑣. 𝑟. =
𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑚. 𝑠.

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑚. 𝑠.
. 

If there are no treatment effects the numerator and denominator should be roughly the same, 

and therefore you would not expect the variance ratio to be much larger than 1. The P value (F 

pr.) is the probability of obtaining your computed F, or a larger one, assuming that the 

treatment means are all equal. Conventionally, a 0.05 value is set for deciding when your 
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treatment means are significantly different: we say we are using a 5% level of significance and 

reject the assumption that the treatment means are all equal whenever the P value is less than 

0.05. But be aware you are playing a numbers game: there are “unlucky” samples when the 

treatment means all equal that produce a 5% significant variance ratio – in fact 1 in every 20 

times that will happen. But at the end of the day you have just the one experiment from which 

a decision is to be made. You are more “confident” in rejecting that the means are equal than 

you are in saying you’re just unlucky. 

However for this experiment, there is very strong statistical evidence (P < 0.001) that the 

treatment means are not all equal. Note that that doesn’t imply they are all different; some are, 

all might be.  

The ANOVA table is a conventional layout, designed in pre-computer days when hand 

calculation was the way the components in the ANOVA table were calculated. You’ll notice that 

the Treatment and Residual sums of squares add to the Total sums of squares, which means 

that, once the latter is calculated, only one of the former two components is required; the 

second can be obtained as a difference. 

G&G show how to hand calculate the sums of squares; it was a valuable monograph for 

agricultural scientists before the advent of modern computers. However, the monograph does 

not mention variances, and that’s what we want to emphasize in this manual. 

We saw that the sample variance was 280,645 with 27 df. The Total in the ANOVA table has 27 

df, but its mean square is left blank (in this menu; it is calculated in the regression menu). Were 
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we to calculate this value it would (by definition) be 7,577,412/27 = 280,645 – which we have 

previously calculated: 

The Total m.s. in an ANOVA table is simply the sample variance of all the data 
being analyzed. 

Hence the name Analysis of Variance: it is a process of looking at the variance of the data 

(ignoring any structure like treatments and blocks), then breaking it down into components 

which are also variances that can be explained, and using those components to form a decision 

in terms of the aims of the experiment. 

So how are the other two component mean squares related to variances? 

Look firstly at the treatment means. GenStat’s Summary Tables menu is like Excel’s Pivot Table 

procedure. In GenStat, simply select the Variate to be reported on and the factor (Group:) for 

which individual statistics are required – in this case treatments: 

  Mean Variance 
 Treatment   
 Azodrin 2128 166678 
 Control 1316 35487 
 DDT + y-BHC 2552 37473 
 Dicecron-Boom 1796 26556 
 Dicecron-Knap 1681 64601 
 Dol-Mix (1 kg) 2127 93631 
 Dol-Mix (2 kg) 2678 238986 

There is quite a bit of variation among the 7 treatment means. The control mean is the lowest, 

presumably because without any treatment the rice has suffered from the plant hoppers and 

stem borers. The means then range to a maximum of 2678 kg ha-1, with Dol-Mix (2 kg) 

apparently the best of the 6 insecticides. 
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Each of the treatment means is based on 4 plot yields. We could calculate the variance of the 7 

treatment means to measure their variability – its value is 232,799. The variance of all the data 

was based on 28 individual plots; the variance in treatment means is based on seven means 

each of 4 plots. So to put the latter on the same unit plot basis, we multiply the sample variance 

of the treatment means by 4, the number of plots that each is based on, and the answer is  

4×232,799 = 931,196 – which is the Treatment m.s. Hence: 

The Treatment m.s. in an ANOVA table is simply the sample variance of all the 
treatment means being analyzed, scaled up by the number of plots each mean is 
based on. 

Keeping on this tack, the sample variance of the 4 plots that received Azodrin is 166,678 and 

this is based on 4-1 = 3 df. This would be a possible estimate of experimental error (the 

parameter for which we defined as 2). But the same argument would hold for every 

treatment, assuming a common variance: each is a potential estimate of 2, and each has 3 df. 

So a better estimate is to average these 7 variances: the average of 232,799 to 238,986 is 

94,773 and the df for this estimate is the combined df of the individual estimates, in this case 

7×(4-1) = 21. This is the Residual m.s. in the ANOVA table. Hence: 

The Residual m.s. in an ANOVA table for an experiment with no blocks is simply 
the average of the sample variances of the individual treatments. 

It can be shown that the Residual m.s. is also the sample variance of the residuals from the 

model, provided the Residual df are used in the calculation of the variance formula, and that 

this statement is a general result for any design. 



23 | P a g e  
©Agro-Tech, Inc. and Statistical Advisory & Training Services Pty Ltd  

What are the fitted values? 

Each model leads to a set of fitted values, which are simply the sample estimates of the 

parameters in the model. For our CRD model 

Yield = overall mean + individual treatment effect + error 

the overall mean is estimated by the mean of all the data (2040 kg ha-1) and the treatment 

effects are estimated as the differences between the individual treatment means and the 

overall mean. So for this design, the fitted value for a given yield is the estimate of (overall 

mean + individual treatment effect), which simplifies to the individual treatment mean. 

For example, the fitted values for each of the 4 plots on which Azodrin was applied is 2128 kg 

ha-1.  

What are the residuals? 

The residuals are the differences between the observed yields and the fitted yields. For 

example, the four individual plot yields on which Azodrin was applied are 2387, 2453, 1556, 

2116, and hence the four residuals are 2387-2128 = 259, 2453-2128 =325, 1556-2128 = -572, 

2116-2128 = -12. Notice that these add to 0, as will be the case for the residuals from the other 

treatments. 

Remember that for normal data 95% of all random samples will fall within  2 (roughly) 

standard deviations of the mean. The theoretical errors are assumed to be normal with 0 

means, and consequently GenStat flags any residual outside of this bound; it prints the value of 

the residual and its estimated standard error: 



24 | P a g e  
                                                                             ©Agro-Tech, Inc. and Statistical Advisory & Training Services Pty Ltd  

Message: the following units have large residuals. 
  
*units* 5    688.  s.e.   267. 
*units* 15    -572.  s.e.   267.  

You should not be too disturbed at these messages, unless the ratio of the residual to its 

standard error is large, say more than 3, which is unlikely (it would happen for roughly only 3 of 

every 1,000 data points by chance). With 28 yields in this experiment you would expect 1 or 

two residuals to be flagged.  

What is more important is to examine residuals in field order when that is applicable, because 

there should be no pattern in the residuals in sign or size. Clusters of large positive residuals 

might indicate a high fertility area that was not accounted for in setting up the experiment (and 

hence in the analysis). Nor should there be trends when residuals are plotted against fitted 

values: if larger fitted values have larger residuals (a plot of residuals might appear to fan out), 

that would indicate a problem with your assumption about equal variance. It may be that a 

log(yield) variate should be analyzed instead, or a newer analysis used that allows for changing 

variance. 

The kind of experiment that we are analyzing here is typical of a possible change in variance: 

control plots (which here are untreated) all show low yields due to the damage by pests, so you 

might expect the control variance to be different to the variance for treated plots. Indeed, the 

latter may also vary with the success of the insecticide. This problem, however, is not for this 

manual. 

For the record, the residual plot is available once the analysis is run by clicking Further Output > 

Residual Plots. Our preference is to also select Standardized so it becomes easy to identify how 
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many and which points are outside the (-2, +2) bounds. This plot does suggest that treatments 

with smaller fitted values (so the Control and the two treatments with low levels of the 

insecticide) may be behaving differently with respect to variance, but with only 4 replicates 

each the evidence for this is not strong. 

 

 

GenStat’s default output includes means and standard errors of means. Optionally you can 

request least significant differences (l.s.d. values): 
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Tables of means 
  
Variate: Yield 
  
Grand mean  2040.  
  
 Treatment  Azodrin  Control  DDT + y-BHC  Dimecron-Boom 
   2128.  1316.  2552.  1796. 
   
 Treatment  Dimecron-Knap  Dol-Mix (1 kg)  Dol-Mix (2 kg)   
   1681.  2127.  2678.   
  

Standard errors of differences of means 
  
Table Treatment   
rep.  4   
d.f.  21   
s.e.d.  217.7  
 

Least significant differences of means (5% level) 
  
Table Treatment   
rep.  4   
d.f.  21   
l.s.d.  452.7   

The l.s.d. values are used in two complementary ways.  

Firstly, any two means that differ by at least the l.s.d. value are significant at 5% at least. So the 

Control is significantly different to the Dimecron-Boom insecticide treatment since  

1316-1796 = 480 > 452.7; and, since the other means are larger than the latter, the control is 

significantly different (again, at 5% at least) to every insecticide treatment. 

Secondly, the l.s.d. value is what you add and subtract to the difference of two means to obtain 

a (95%) confidence interval (CI) for that “true” difference. So a 95% CI for the difference in 

mean yield for say Dimecron-Boom and Dimecron-Knap is 1796-1681  452.7 which leads to an 

interval (-338, 568) kg ha-1. This interval includes 0 and says that the two treatments are not 

statistically significant (at 5%). 
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Contrasts 

While discussing differences in treatment means we can make use of GenStat’s powerful 

contrasts facility in the Analysis of Variance menu. We won’t look at what are called orthogonal 

contrasts (in GenStat known as Regression type) but at simple contrasts which simply obey the 

rule that the coefficients of a contrast add to 0. 

A brief background. 

When we compared the Control (call its mean say 𝑌തଵ) and Dimecron-Boom (say 𝑌തଶ) we 

essentially took the mean difference (𝑌തଵ − 𝑌തଶ), which can be thought of as (+1)𝑌തଵ + (−1)𝑌തଶ. 

The coefficients of 𝑌തଵ and 𝑌തଶ in this linear function (+1 and -1) add to 0. 

Suppose next you believed that treatment 2 and treatment 3 were very similar, and wanted to 

see if treatment 1 differed from them (on average). We base our decision on the mean 

difference  

ቆ𝑌തଵ −
𝑌തଶ + 𝑌തଷ

2
ቇ 

which can be re-expressed as ቀ+1 × 𝑌തଵ −
ଵ

ଶ
× 𝑌തଶ −

ଵ

ଶ
× 𝑌തଷቁ and the set of coefficients 

ቀ+1, −
ଵ

ଶ
, −

ଵ

ଶ
ቁ still add to 1. Fractions are sometimes awkward to enter (think of 1/3); in this 

example we can multiply by 2 and use (2, -1, -1) instead: it makes no difference to the F tests. 

If you think of the 7 means in our example being arranged in a list {𝑌തଵ, 𝑌തଶ, ⋯ , 𝑌ത଻} there are many 

such comparisons you might make. 
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One natural question (contrast) to consider might be whether applying an insecticide or not is 

beneficial to rice production. This would be a contrast of the Control with all 6 insecticides, and, 

generalizing the last contrast, would be (6, -1, -1, -1, -1, -1, -1). The signs don’t matter: 𝑌തଵ − 𝑌തଶ 

answers the same questions as does 𝑌തଶ − 𝑌തଵ. They just need to be consistent so we could use  

(-6, 1, 1, 1, 1, 1, 1) just as well. 

Another contrast might be whether Dol-Mix (2 kg) produces better yields than Dol-Mix (1 kg). If 

these are the final two treatments in the list then the contrast would be (0, 0, 0, 0, 0, 1, -1), the 

0s indicating that those treatments are not considered in this particular question. 

To do this in GenStat, either highlight the Treatment factor and click the Contrasts button, or 

just click the Contrasts button and select the Treatment factor. Then indicate the number of 

contrasts you wish to make – let’s ask 6 different questions: 

 

A table pops up waiting for you to indicate the coefficients for the 6 questions you’re interested 

in, for example: 
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1. Control vs Treated (-6, 1, 1, 1, 1, 1, 1) 

2. Dimecron-Boom vs Dimecron-Knap 

3. Azodrin vs the two Dimecron treatments 

4. Dol-Mix (1 kg) vs Dol-Mix (2 kg) 

5. The two Dimecron treatments vs the two Dol-Mix treatments 

6. DDT + -BHC vs Dol-Mix (2 kg) 

 

Complete the table of contrast coefficients and click back into the Analysis of Variance menu. 

The ANOVA table has the overall test of all seven treatment means, followed by an individual F 

test and P value for each of the comparisons among the seven treatments you decided to 

make: 

Analysis of variance 
  
Variate: Yield 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Treatment 6  5587175.  931196.  9.83 <.001 
  Cont vs Treat 1  2443742.  2443742.  25.79 <.001 
  Dim-M vs Dim-K 1  26450.  26450.  0.28  0.603 
  Az vs Dim 1  404561.  404561.  4.27  0.051 
  Dol 1 vs Dol 2 1  607753.  607753.  6.41  0.019 
  Dim vs Dol 1  1762920.  1762920.  18.60 <.001 
  DDT vs Dol 2 1  31878.  31878.  0.34  0.568 
Residual 21  1990238.  94773.     
Total 27  7577412.       
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Completely randomized design with unequal replication 

Unequal replication for a simple treatment structure causes no real difficulty. The formulae 

discussed in the previous section are slightly modified (so replicates are used as weights inside 

each formula). Otherwise the concepts are the same. 

Where the treatment structure is more complex and is unequal replication, the analysis is more 

complex and will be left for a later discussion.  

An example of a more complex treatment design might be where we have one factor, herbicide 

(with different herbicides forming the levels), in combination with a second factor, rate of 

application (with different rates for each herbicide). This is known as a factorial treatment 

structure. Herbicide × Rate of Application is called a two-way treatment structure, Herbicide × 

Rate of Application × Time of Application is a three-way treatment structure, and so on. 

In GenStat a shortcut way for defining a factorial treatment structure is simply to list the factors 

with an * between them, so Herbicide*Rate and Herbicide*Rate*Time and so on.  

The example in G&G on Page 19 is almost an example of a three-way treatment design, but not 

all combinations are present and there are other treatments (such as the Control) that are not 

in combination with anything. In G&G the experiment is used with all the treatment 

combinations set out in a single treatment simply to illustrate the unequal replication feature of 

the analysis. 
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Randomized Complete Block Design (RCBD)+simple treatment structure 

As G&G explain, the RCBD has been the most common design used in agricultural research. The 

reason it is selected is usually because it is often not possible to find sufficiently many plots that 

are all alike in growing conditions prior to the randomization of treatments to plots.  

We won’t repeat the discussion on Pages 20-22 of G&G but the discussion is excellent. What we 

concentrate on is the simple step from the field layout to the GenStat analysis. 

Suppose you have a fertility gradient of some sort or another left to right. We would need, 

therefore, to form (say 4) blocks perpendicular to that gradient: 

Block 1  Block 2  Block 3  Block 4 

           
           
           
           
           
           

 

Immediately, then, we have a stratum which we can name the block stratum. Note, however, 

that the land in Block 1 differs in growing conditions to the land in every other block because of 

the fertility trend moving left to right. So the large area we call Block 1 is unreplicated 

anywhere else in the research area. Blocks are unreplicated; we need replication of a factor in 

order to form a test of that factor (for example, in the first example we had 4 replicates of 

every treatment and were able to test whether the treatment means were all equal). Hence, 

technically, blocks cannot be tested in an analysis of variance. 
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Another point to make before moving on is the fact that whatever conclusions we draw from 

this experiment in which we formed blocks, we would like to generalize our findings to other 

areas in which the growing conditions are similar to those in our experimental area. In that 

sense we regard the blocks we just formed as a random example of the types of land we want 

to make recommendations about. We call the Block factor a random factor so we can make 

generalizations, unlike a fixed factor such as a Rate of seeding which might differ from 25 kg/ha 

to 150 kg/ha in steps of 25 kg/ha (so 6 levels). In the latter case we confine our attention to 

(within) that range of seeding, and not comment on say 200 kg/ha. 

The next step in the design of our experiment is to apply the treatments to the blocks. The G&G 

example on Page 26 has 4 blocks and the 6 seeding rates just defined. So in each block, we 

need to construct 6 similar plots, then randomize the 6 treatments to those 6 plots, block by 

block: 

Forming plots in each block: 

Block 1  Block 2  Block 3  Block 4 
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Randomizing treatments (rate of seeding) in each block: 

Block 1  Block 2  Block 3  Block 4 

125  75  100  75 

50  125  50  25 

150  100  125  100 

25  25  75  150 

75  150  150  50 

100  50  25  125 
 

In forming the 6 plots in each block we have a constructed a second stratum, a plot in a block, 

whose shape is just ଵ
଺

th of the block shape. We can write what we did pictorially: 

1. First form blocks in the field, thereby generating a factor Block with 4 levels. 

2. Next take each block and divide it into 6 plots, thereby forming a Plot factor with 6 

levels. Physically the process of forming plots in each block can be represented as 

Block/Plot. 

This is exactly what GenStat allows you to use in the General Analysis of Variance for an RCB 

design. However think through the two strata we constructed in the field: 

 There are 4 blocks, so the Block stratum is simply the factor named Block.  

 There are 4×6 = 24 plots altogether, so to index every plot for the Plot stratum we need 

to use the construct discussed in the first example, Block.Plot. 

So in GenStat, Block/Plot is simply a shortcut for Block + Block.Plot. 

Since GenStat allows the smallest (last) stratum to be omitted, we need only use Block in the 

General Analysis of Variance for an RCB design. However you should keep in mind that the full 
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structure is Block/Plot = Block + Block.Plot because with the newer REML analysis you might 

need to use the full structure for various reasons. 

It is worth thinking through what happens when the treatments are compared. The yield from 

Block 1 associated with 25 kg/ha seeding rate is made up of an overall mean, plus or minus a 

component associated with that seeding rate, plus or minus a component due to the fact that 

this plot is in a block on the left of the fertility spectrum. In fact any yield in the experiment can 

be expressed as: 

Yield = overall mean + block effect + treatment effect + error 

which is similar to the CRD model but contains the additional block effect. 

So the mean yield for the 25 kg/ha treatment includes one yield from every block, so on 

average contains an average block effect. But so does every other treatment mean. When you 

compare two treatment means, the average block effect, which is present in both means, 

disappears in the treatment mean difference. So every treatment mean difference is an 

estimate of that real treatment effect, if there is one. 

This will not be the case if every treatment does not occur in each block, as happens for 

example when one plot is ruined by say a flood in the corner of the research field. To make the 

point, suppose that, in the highest fertile block, the plot that had treatment 1 randomized to it 

was accidentally destroyed. A comparison between the mean of treatment 1 with any other 

mean would now be most unfair, because the other treatment mean has a yield coming from 

the highest fertile block and treatment 1 does not.  
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This might be easier to see using the model and taking expectations. Let’s use 𝜏௜ for the ith 

treatment effect and 𝛽௝ for the jth block effect. We want to estimate (𝜏ଵ − 𝜏ଶ), remembering 

that treatment 1 is missing from the highly fertile block 1: 

𝐸(𝑌തଵ − 𝑌തଶ) = (𝜏ଵ − 𝜏ଶ) +
ఉమାఉయାఉర

ସ
−

ఉభାఉమାఉయାఉర

ହ
 

You can see that the block effects no longer cancel out in this difference. So for missing data, 

we need a different analysis. The C in RCB indicates a complete set of treatments in each block 

RCB data from G&G Page 26. Grain yield, kg/ha: 

 Block  
Rate, kg seed/ha 1 2 3 4 Treatment mean 

25 5,113 5,398 5,307 4,678 5,124 
50 5,346 5,952 4,719 4,264 5,070 
75 5,272 5,713 5,483 4,749 5,304 

100 5,164 4,831 4,986 4,410 4,848 
125 4,804 4,848 4,432 4,748 4,708 
150 5,254 4,542 4,919 4,098 4,703 

Block mean 5,159 5,214 4,974 4,491  
 

Notice that the yields are low towards the right of the field, so the decision to block was 

possibly justified. By blocking with 4 blocks, 3 df have been lost from the CRD residual term in 

the ANOVA, so there is slightly less precision for comparing means across seeding rates; but a 

possible large gain by controlling the variation in yields. 

 

In GenStat we can again use the specialist or general analysis of variance menu. Blocks are 

called Rep in the data set. The next three menus all give the same ANOVA. The only difference 

between the second and third menus is in the way GenStat names the plot stratum (it uses 

Rep.*Units* stratum when the plots within a block are dropped from the Block Structure): 
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The sample variance of the 24 yields is 208,742 and this has 23 df. Once again, we should 

expect to see a Total s.s. of 23×208,742 = 4,801,068 in the ANOVA. 

In addition to the means and the 
standard error of a treatment 
mean difference (sed) that 
GenStat prints as defaults, in 
Options you can request LSD 
values and Stratum Variances, as 
well as the standard error of a 
mean (in case you want to add 
this common value as an error 
bar in an Excel scatter plot). 
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Analysis of variance 
  
Variate: Yield 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 3  1944361.  648120.  5.86   
  
Rep.Treatment stratum 
Treatment 5  1198331.  239666.  2.17  0.113 
Residual 15  1658376.  110558.     
  
Total 23  4801068.       

 
The sample variance of the treatment means (which are each based on 4 yields) is 59,917 and, 

using the same logic as with the CRD ANOVA, 4 ×59,917 = 239,666 will be the Treatment m.s. 

The sample variance of the block means (which are each based on 6 yields) is 108,020 and, 

using the same logic as with the CRD ANOVA, 6 ×108,020 = 648,120 will be the Block m.s. 

We have not yet discussed the analysis of a factorial treatment design, but when we do you will 

see that the Residual is the interaction between treatments and blocks. We don’t expect that 

treatments will behave differently in each block, and hence we use this term in the construction 

of the F statistic (or variance ratio, v.r.) for comparing treatment means. 

Note that GenStat, like G&G, does not construct an F test for blocks. Blocks are in 
a stratum on their own. There is no replication of blocks, so as a fixed effect 
blocks are untestable.  Almost every other statistical package incorrectly provides 
a P value for blocks. 

So from the ANOVA table we conclude there is insufficient statistical evidence (P = 0.113) that 

not all means are equal. That’s not to say that every pairwise comparison will be not significant. 

There are only 4 replicates of each treatment, and even if there are differences the overall F 

test is not powerful enough to detect an overall difference. 
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The 5% least significant difference (LSD) value can be used in two ways.  

 Firstly, any two treatment means that differ in absolute value by more than the LSD 

value are in fact significantly different at a 5% level. With an LSD value of 501 it would 

appear that a 75kg/ha seeding rate is superior to 150 kg/ha since this difference is  

5304 – 4703 = 601 kg/ha. 

 Secondly, a 95% confidence interval for a mean difference is obtained by adding and 

subtracting the LSD value from the difference. So the 75kg/ha seeding rate is superior to 

150 kg/ha by 601 kg/ha, although the true difference is likely to be within the interval 

601  501, or (100 kg/ha, 1,102 kg/ha). 

 

Tables of means 
  
Variate: Yield 
  
Grand mean  4960.  
  
 Treatment  25  50  75  100  125  150 
   5124.  5070.  5304.  4848.  4708.  4703. 
  
  

Standard errors of means 
  
Table Treatment   
rep.  4   
d.f.  15   
e.s.e.  166.3   
  
  
  

Standard errors of differences of means 
  
Table Treatment   
rep.  4   
d.f.  15   
s.e.d.  235.1   
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Least significant differences of means (5% level) 
  
Table Treatment   
rep.  4   
d.f.  15   
l.s.d.  501.1   

 

When the means are plotted the 75 kg/ha rate appears unusual. We do not know enough of the 

background to ask why this is the case. But if we take it at face value, we might wonder 

whether there is a linear decline in mean yield with increasing seedling rate. 

 

Again, we can select Contrasts in the ANOVA menu, this time selecting Polynomial and setting 

the degree of the polynomial to 1 (linear): 
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Analysis of variance 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 3  1944361.  648120.  5.86   
  
Rep.Treatment stratum 
Treatment 5  1198331.  239666.  2.17  0.113 
  Lin 1  760035.  760035.  6.87  0.019 
  Deviations 4  438296.  109574.  0.99  0.442 
Residual 15  1658376.  110558.     
  
Total 23  4801068.    

 

There is a significant linear decrease (P=0.019). Notice that of the variability among treatment 

means that can be explained, a simple linear model explains 760,035/1,198,331 = 63%.  

If you also request Contrasts in Options, the slope of the linear regression is printed out: 

Treatment contrasts 
  
Lin  -4.2,  s.e. 1.59,  ss.div. 43750. 
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The yield declines by 4.2 kg/ha for every 1 kg/ha additional seeding rate. The mean seeding rate 

is 87.5, and the actual regression line is 

Yield = mean yield – 4.2 × (Rate – mean rate) = 4,960 – 4.2 (rate – 87.5) = 5,324 – 4.2 × Rate: 

 

 

Randomized Complete Block Design + factorial treatment structure 

Making the treatment structure more complex does not cause any difficulty in the field 

provided that all treatments are completely randomized in every block. When a more complex 

allocation of treatments to field plots occurs, that is when a more complex analysis is required. 

The following example from Page 92 of G&G illustrates a two-factor treatment design set out in 

4 randomized blocks. You’ll see there is no pattern in the allocation of treatments to plots in 

each block. There are 3 varieties (V1 = 6966, V2 = P1215936, V3 = Milfor 6(2)), each in 

combination with 5 levels of a nitrogen fertilizer (N0 to N4 = 0, 40, 70, 100, 130 kg/ha). 

 

y = -4.168x + 5324.3
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Rep Treatment layout  Grain yield, t/ha 

 V3N2 V2N1 V1N4 V1N1 V2N3   5.822 4.956 5.874 4.788 5.664 
1 V3N0 V1N3 V3N4 V1N2 V3N3   4.192 6.034 5.864 4.576 5.888 

 V2N4 V3N1 V2N0 V1N0 V2N2   5.458 5.25 2.846 3.852 5.928 

            
 V2N3 V3N3 V1N1 V2N0 V2N1   5.362 5.524 4.936 3.794 5.128 

2 V1N3 V3N2 V1N2 V1N4 V2N4   5.276 4.848 4.454 5.916 5.546 

 V1N0 V3N4 V2N2 V3N1 V3N0   2.606 6.264 5.698 4.582 3.754 

            
 V1N1 V3N0 V1N0 V3N1 V1N4   4.562 3.738 3.144 4.896 5.984 

3 V2N2 V1N2 V1N3 V2N4 V3N4   5.81 4.884 5.906 5.786 6.056 

 V2N0 V3N2 V2N1 V2N3 V3N3   4.108 5.678 4.15 6.458 6.042 

            
 V1N2 V2N2 V2N4 V1N0 V2N0   3.924 4.308 5.932 2.894 3.444 

4 V1N3 V3N1 V1N4 V1N1 V2N3   5.652 4.286 5.518 4.608 5.474 

 V3N0 V2N1 V3N2 V3N3 V3N4   3.428 4.99 4.932 4.756 5.362 
 

So, in the field, each block has to consist of 15 plots that are all assumed to be homogeneous. 

The design shown here, however, may be compromised. If the blocks are (fairly) contiguous, 

then any fertility trends or differences down from block 1 to block 4 may well be reflected in 

the three rows of each block as well. Examining residuals in field order might show up this inner 

trend: we will do this post-analysis on the assumption that this was the field layout for this 

experiment (it is unclear from G&G if this was the case). 

Strictly speaking, in GenStat the Block Structure would be Block/Plot as with the previous 

example: firstly blocks are constructed, and then 15 plots within each block were formed. The 

Plot factor would have 15 levels containing the numbers 1 to 15, or they could contain labels 

such as the combination of V and N applied to each of the plots, as shown here: 
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Alternatively, the Block Structure could simply be Block since the final stratum can always be 

omitted in GenStat (as explained previously, adding Plot simply allows that factor to be named 

in the smaller stratum of the ANOVA). 

We could treat this experiment as a one-way treatment design with 15 treatments. We have a 

factor called VN in the spreadsheet that would allow this analysis: 

Analysis of variance 
  
Variate: Yield 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Block stratum 3  2.5998  0.8666  5.73   
  
Block.Plot stratum 
VN 14  44.5783  3.1842  21.05 <.001 
Residual 42  6.3528  0.1513     
  
Total 59  53.5309  
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There is a strong treatment effect, but you would have to look very carefully at the 15 means to 

make any sense of the differences. Instead, from this analysis we really like: 

 an idea of whether any change in yield with increasing N is consistent for every variety; 

and if it is consistent (the trends will be parallel), then: 

 

 is there a difference in mean yield among the varieties, averaged over nitrogen levels 

and 

 

 is there a change in mean yield with increasing N, averaged over varieties? 

Notice that we look at the interaction before we interpret average (or main) 
effects. We only interpret the main effects when the interaction is not significant. 

The reason for this is simple enough: if there is an interaction, then the optimal level of N for 

one variety is likely to be different to that for another variety. So your recommendation to a 

farmer will be provisional on which variety is being sown. If there is no interaction, the 

recommendation will be consistent for all varieties and that is the main effect for varieties. 

The two way means (t/ha) are as follows 

 Nitrogen fertilizer (kg/ha)  
Variety 0 40 70 100 130 Variety means 

6966 3.124 4.723 4.459 5.717 5.823 4.769 
P125936 3.548 4.806 5.436 5.739 5.680 5.042 
Milfor 6 3.778 4.753 5.320 5.553 5.886 5.058 

Nitrogen means 3.483 4.761 5.072 5.670 5.797  
 

There appears to be a definite increase in mean yield with increasing N across the varieties. 

Whether the means of the three varieties are significantly different is at this stage. And to get a 
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sense of whether the increase in nitrogen means is consistent across the three varieties a plot is 

more helpful: 

 

 

 

There appears to be some similarity in the trends, with variety 6966 behaving oddly at 70 kg/ha 

N. 

So, how are these questions resolved as part of the ANOVA? We use the principles already 

outlined. 

To test whether there is a variety effect, we look at the three variety means 4.769, 5.042 and 

5.058. Each mean is an average of 4×5 = 20 plots in the field: each of 4 blocks contributes 5 

plots that had a particular variety (just a different level of N). So we would expect that the 

ANOVA would have a component Variety m.s. equal to: 

20×var(4.769, 5.042, 5.058) = 20×0.026 = 0.526 (see the ANOVA table on the next page) 
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To test whether there is a nitrogen effect, we look at the five nitrogen means 3.483, 4.761, 

5.072, 5.670 and 5.797. Each mean is an average of 4×3 = 10plots in the field: each of 4 blocks 

contributes 3 plots that had a particular nitrogen level (just a different variety). So we would 

expect that the ANOVA would have a component Nitrogen m.s. equal to: 

12×var(3.483, 4.761, 5.072, 5.670, 5.797) = 12×0.859 = 10.309 (see the ANOVA table) 

Calculation of the interaction m.s. begins to get complex and is best left to statistical software. 

Basically, we mentioned that for a simple RCBD, the Residual m.s. is simply a Block × Treatment 

interaction. So technically, for a table of two-way means with v varieties and n nitrogen levels, 

we would obtain the residuals for each of vn means in the two-way table by subtracting the 

particular variety mean and the particular nitrogen mean from each two-way mean. Then we 

would calculate the sample variance of these values, dividing not by (vn-1) but by 

(vn-1) - (v-1) - (n-1) = (vn-v-n+1) = (v-1) (n-1) 

These are the interaction degrees of freedom: note that the formula is a product of the degrees 

of freedom of the main effects making up the interaction. This simple formula allows us to 

know the df for any complex interaction. 
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The ANOVA from GenStat  

Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Block stratum 3  2.5998  0.8666  5.73   
  
Block.combo stratum 
V 2  1.0528  0.5264  3.48  0.040 
N 4  41.2347  10.3087  68.15 <.001 
V.N 8  2.2907  0.2863  1.89  0.087 
Residual 42  6.3528  0.1513     
  
Total 59  53.5309       
  
Message: the following units have large residuals. 
  
Block 1 combo V2N0    -0.878  s.e.   0.325 
Block 3 combo V2N1    -0.846  s.e.   0.325 
Block 4 combo V2N2    -0.805  s.e.   0.325 
  

Tables of means 
  
Variate: Yield 
  
Grand mean  4.956  
  
 V  6966  P125936  Milfor 6 
   4.769  5.042  5.058 
  
 N  0  40  70  100  130 
   3.483  4.761  5.072  5.670  5.797 
  
 V N  0  40  70  100  130 
 6966   3.124  4.723  4.459  5.717  5.823 
 P125936   3.548  4.806  5.436  5.739  5.680 
 Milfor 6   3.778  4.753  5.320  5.553  5.886 
  

Standard errors of differences of means 
  
Table V N V   
   N   
rep.  20  12  4   
d.f.  42  42  42   
s.e.d.  0.1230  0.1588  0.2750   
  

Least significant differences of means (5% level) 
  
Table V N V   
   N   
rep.  20  12  4   
d.f.  42  42  42   
l.s.d.  0.2482  0.3204  0.5550   
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So the ANOVA table confirms: 

 there is insufficient statistical evidence to suggest that the increase in means with 

increasing N is not the same for all three varieties (P=0.087) – this is the interaction V.N; 

 there is strong statistical evidence that, averaged across varieties, the means for 

different levels of N are statistically different (P<0.001) – this is main effect of N; 

 there is enough statistical evidence that, averaged across nitrogen levels, the means for 

different varieties are statistically different (P=0.040) – this is main effect of V. The lsd 

values indicate that variety 6966 differs from both P125936 and Milfor 6. 

Of course, had interest in the comparison of variety 6966 with each of the others been of 

interest prior to the analysis this could have been incorporated into the ANOVA. Similarly, the 

trend in mean yield across levels of N could be explored by say setting the Polynomial level to 2 

(for quadratic). 

So in the General Analysis of Variance menu,  

 highlight N in V*N, select Contrasts, select Polynomial and change the Number of 

Contrasts to 2. Then 

 highlight V in V*N, select Contrasts, select Comparisons and ensure the Number of 

Contrasts is 2. Then define and name the matrix of contrasts, as with the last example. 
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GenStat automatically changes the Treatment Structure to COMP(V;2;Cont)*POL(N;2) and gives 

this ANOVA instead: 

Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Block stratum 3  2.5998  0.8666  5.73   
  
Block.combo stratum 
V 2  1.0528  0.5264  3.48  0.040 
  6966_P125 1  0.7431  0.7431  4.91  0.032 
  6966_Mil 1  0.8335  0.8335  5.51  0.024 
N 4  41.2347  10.3087  68.15 <.001 
  Lin 1  36.7679  36.7679  243.08 <.001 
  Quad 1  3.4779  3.4779  22.99 <.001 
  Deviations 2  0.9890  0.4945  3.27  0.048 
V.N 8  2.2907  0.2863  1.89  0.087 
  6966_P125.Lin 1  0.2846  0.2846  1.88  0.177 
  6966_Mil.Lin 1  0.3784  0.3784  2.50  0.121 
  6966_P125.Quad 1  0.3193  0.3193  2.11  0.154 
  6966_Mil.Quad 1  0.0033  0.0033  0.02  0.884 
Residual 42  6.3528  0.1513     
  
Total 59  53.5309       

 

The actual P values for the variety contrasts are now given (0.032 for the first and 0.024 for the 

second). The trend in N is complex: not simply linear (P<0.001) or quadratic (P<0.001). The 

Deviations represents what has not been modelled: so in this case combines power 3 and 

power 4 components. (Through 5 points a power 4 curve fits exactly.) Biologically, a simple 

power model is not a good representation of the effect of N. 
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Finally (though this should have been done up front), we can check residuals. Click Further 

Output, Residual Plots and Standardized (so the bulk of residuals lie between -2 and +2). The 

scatter appears random, as expected (see the plot on the previous page). There are three 

residuals smaller than -2 (and these were flagged in to ANOVA output); these correspond to 

plots that had variety 2 planted in them. Three out of 60 residuals outside (-2, +2) is exactly 5%, 

what is expected to happen just by chance. 
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Notice that GenStat offered Contour Plots and a table of residuals displayed in the Output 

window in field layout. To do this, the data should be sorted to more easily set up an X and Y 

coordinate for each plot. You need to imagine the experiment layout superimposed on an X-Y 

axis. Then the top left hand corner plot in the field (in row 1 and column of block 1) would have 

a Y value of 12 (since there are 3×4 = 12 rows in the 4 blocks) and an X value of 1. The plot in 

Block 4, row 3 column 1 would represent coordinates Y=1, X=1. Using shading to identify the 

blocks, the full coordinate system of the layout in the field is as follows: 

Y=12 V3N2 V2N1 V1N4 V1N1 V2N3 
Y=11 V3N0 V1N3 V3N4 V1N2 V3N3 
Y=10 V2N4 V3N1 V2N0 V1N0 V2N2 

Y=9 V2N3 V3N3 V1N1 V2N0 V2N1 
Y=8 V1N3 V3N2 V1N2 V1N4 V2N4 
Y=7 V1N0 V3N4 V2N2 V3N1 V3N0 
Y=6 V1N1 V3N0 V1N0 V3N1 V1N4 
Y=5 V2N2 V1N2 V1N3 V2N4 V3N4 
Y=4 V2N0 V3N2 V2N1 V2N3 V3N3 
Y=3 V1N2 V2N2 V2N4 V1N0 V2N0 
Y=2 V1N3 V3N1 V1N4 V1N1 V2N3 
Y=1 V3N0 V2N1 V3N2 V3N3 V3N4 

(0,0) X=1 X=2 X=3 X=4 X=5 
 

So in the spreadsheet, we have sorted so that the 12 data values in column 1 all appear in 

order. Then we pointed to the labelled row and right clicked, selected Fill, started the process 

at 12, ended at 1 and had to have an increment of -1 in order to descend 12, 11, …, 1: 
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The two coordinate columns must be left as variates. So back in Residual Plots, identify the X 

and Y coordinates and select Final stratum only residuals (so that the block effect is also 

removed) 
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The residuals in correct field order are displayed in the Output window and a contour plot is 

generated. 

 Final_stratum_residuals     
 col 1 2 3 4 5 
 row   
 12 0.3257 -0.8783 -0.0905 0.2342 0.0926 
 11 -0.0263 0.5517 -0.4740 -0.0013 0.2186 
 10 -0.1253 0.3157 0.4215 -0.0848 0.2576 
 9 -0.1118 -0.3335 0.3060 -0.0208 -0.1449 
 8 -0.2518 0.0155 -0.1275 0.3697 0.0176 
 7 0.2377 0.2565 0.0200 0.1677 0.2071 
 6 0.1407 0.2900 -0.3518 -0.8463 0.0571 
 5 -0.1988 0.3660 -0.2303 0.5282 -0.0274 
 4 -0.0598 -0.3970 -0.1703 0.2992 0.5066 
 3 0.1592 -0.4280 -0.0478 -0.2129 -0.0654 
 2 -0.3988 0.0385 -0.0293 -0.8054 -0.4739 
 1 0.3202 0.1370 0.1837 0.5741 -0.2019 
 

Of course there should be no 

pattern in size or sign 

throughout the field. The 

contour plot is a graphic way of 

identifying patches of large or 

small residuals. There is 

evidence of a patchy nature in 

growing conditions in this field. 

There are designs that allow for 

fertility trends in more than 

one direction. There are also 

modern methods of analysis 

which attempt to model more 

complex trends (see the REML 

manual for some of these).  
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Split-plot randomized complete block design 

The next design is useful when there are two or more treatment factors and the total number 

of treatment combinations is too large to achieve a simple RCB layout. The design is a three-

stage one. 

1. Form blocks in the field; 

2. In each block, form large areas (called main-plots or whole-plots) to which one of the 

treatment factors (called the whole-plot treatment) is randomized into; 

3. In each main plot, form sub-plots or split-plots to which the second treatment (called 

the split-plot treatment) is applied to. 

So there are three strata in this experiment. The Treatment Structure is an extension of that for 

a simple RCBD, paralleling what was done in the field: block/whole-plot/sub-plot. Note that 

either or both of the whole-plot and split-plot treatments could themselves be factorial 

combinations of factors. We’ll illustrate though using G&G simple two-factor example from 

Page 102.  The formation of whole-plots described in G&G could be problematic for the same 

reasons as in the previous example: if there really is some fertility difference among the blocks, 

then any difference could well be reflected within each block as well. We will, however, take 

the example on face value: the blocks may well not be contiguous, and the 6 main-plots may 

well have similar growing conditions in a given block. 

The example has 6 levels of a nitrogen fertilizer (N0 to N6 = 0, 60, 90, 110, 150, 180 kg N/ha) 

randomized into the six whole-plots in each of three blocks. In each whole-plot, 4 varieties  

(V1 = R8, V2 = IR5, V3 = C4-63, V4 = Peta) were randomized into the 4 split-plots. The actual field 

layout is not provided so the data are simply presented for analysis. 
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Block 1   Block 2  Block 3 
 

Grain yield (kg/ha), Page 102 of G&G 

Variety Block 1 Block 2 Block 3 

 0 kg N/ha 
C4-63 3464 2944 3142 
IR5 3944 5314 3660 
IR8 4430 4478 3850 
Peta 4126 4482 4836 
 60 kg N/ha 
C4-63 4768 6004 5556 
IR5 6502 5858 5586 
IR8 5418 5166 6432 
Peta 5192 4604 4652 
 90 kg N/ha 
C4-63 6244 5724 6014 
IR5 6008 6127 6642 
IR8 6076 6420 6704 
Peta 4546 5744 4146 
 120 kg N/ha 
C4-63 5792 5880 6370 
IR5 7139 6982 6564 
IR8 6462 7056 6680 
Peta 2774 5036 3638 
 150 kg N/ha 
C4-63 7080 6662 6320 
IR5 7682 6594 6576 
IR8 7290 7848 7552 
Peta 1414 1960 2766 
 180 kg N/ha 
C4-63 5594 7122 5480 
IR5 6228 7387 6006 
IR8 8452 8832 8818 
Peta 2248 1380 2014 
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Replicates of treatments are what are used in the construction of F tests for that treatment. We 

have pointed out that blocks are unreplicated, so they form a stratum on their own and we do 

not test for blocks. 

The 6 nitrogen fertilizers were randomized into the whole-plots in each block, the application 

being made uniformly across each whole-plot. However, each Nitrogen mean from a single 

whole-plot is a mean of the 4 split-plot yields within that whole-plot. The set of means is 

Nitrogen Block 1 Block 2 Block 3 Nitrogen means 
0 3991.0 4304.5 3872.0 4055.8 

60 5470.0 5408.0 5556.5 5478.2 
90 5718.5 6003.8 5876.5 5866.3 

120 5541.8 6238.5 5813.0 5864.4 
150 5866.5 5766.0 5803.5 5812.0 
180 5630.5 6180.3 5579.5 5796.8 

Block means 5369.7 5650.2 5416.8  
 

So each of the overall Nitrogen means is based on 4×3 = 12 replicates and hence the Nitrogen 

m.s. is 12×var(4055.8, 5478.2, 5866.3, 5864.4, 5812, 5796.8) = 12×507,153 = 6,085,840. 

Similarly, each of the 3 block means is based on 4×6 = 24 plot split-yields, so 

Block m.s. = 24×var(5369.7, 5650.2, 5416.8) = 24×22,554 = 541,288. 

To test the effect of the nitrogen fertilizer we construct a Residual m.s. based on an RCB 

ANOVA of these whole-plot two-way means. 

Next, varieties were randomized into each of the 6 whole-plots in each block. Hence each 

variety has 3 block × 6 split-plot =18 yields from split-plots. The variety means are 5564.4, 
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6155.5, 6553.6, 3642.1 so  

Variety m.s. = 18×var(5564.4, 6155.5, 6553.6, 3642.1) = 18×1,664,594 = 29,962,700. 

The split-plot yields are used to obtain a Residual m.s. (different from that based on the larger 

whole-plots) used for testing for varieties. 

 

Next, the interaction is calculated from the two-way table of Variety × Nitrogen means. Each 

mean is based on 3 split-plot means, one from each block. So the same Residual m.s. used to 

test for Variety is used to test the Variety.Nitrogen interaction. 

So the organization of the split-plot RCB ANOVA reflects the way the Blocks, whole-plots and 

split-plots were formed: 

The Total m.s. is the variance of all 72 data values, as usual, and turns out to be 2,883,773. 

 

Component df m.s. 
Block stratum   
Block (3-1) = 2 541,288 
Block.Variety stratum   
Nitrogen (6-1) = 3 6,085,840 
Residual (1) (3-1) × (6-1) = 10 To be calculated 
Block.Variety.Nitrogen stratum   
Variety (4-1) = 5 29,962,700 
Nitrogen.Variety (6-1) × (4-1) = 15 To be calculated 
Residual (2) 36 To be calculated 
Total (72-1) = 71 2,883,773 

 

Residual (1) is the Res m.s. from the whole-plot replicates and Residual (2) is the Res m.s. from 

the split-plot replicates. We have entered the degrees of freedom for the latter as a difference 
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(71 minus the rest), but it is an average of six RCBD errors, one for each whole plot in an 

analysis of blocks and nitrogen, hence the df are 6×(3-1)×(4-1) = 36. 

The full ANOVA is given over the next two pages. 

Analysis of variance 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 
Rep stratum 2  1082577.  541288.  3.81   
  
Rep.Nitrogen stratum 
Nitrogen 5  30429200.  6085840.  42.87 <.001 
Residual 10  1419679.  141968.  0.41   
  
Rep.Nitrogen.Variety stratum 
Variety 3  89888101.  29962700.  85.71 <.001 
Nitrogen.Variety 15  69343487.  4622899.  13.22 <.001 
Residual 36  12584873.  349580.     
  
Total 71  204747916.       
  

Tables of means 
 
Grand mean  5479.  
  
 Nitrogen  0  60  90  120  150  180 
   4056.  5478.  5866.  5864.  5812.  5797. 
  
 Variety  C4-63  IR5  IR8  Peta 
   5564.  6156.  6554.  3642. 
  
 Nitrogen Variety  C4-63  IR5  IR8  Peta 
  0   3183.  4306.  4253.  4481. 
  60   5443.  5982.  5672.  4816. 
  90   5994.  6259.  6400.  4812. 
  120   6014.  6895.  6733.  3816. 
  150   6687.  6951.  7563.  2047. 
  180   6065.  6540.  8701.  1881. 
  

Standard errors of differences of means 
Table Nitrogen Variety Nitrogen   
   Variety   
rep.  12  18  3   
s.e.d.  153.8  197.1  445.5   
d.f.  10  36  43.53   
Except when comparing means with the same level(s) of 
Nitrogen    482.8   
d.f.    36   
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Least significant differences of means (5% level) 
Table Nitrogen Variety Nitrogen   
   Variety   
rep.  12  18  3   
l.s.d.  342.7  399.7  898.1   
d.f.  10  36  43.53   
Except when comparing means with the same level(s) of 
Nitrogen    979.1   
d.f.    36   

Estimated stratum variances 
 
Stratum variance  effective d.f.   variance component  
Rep  541288.3  2.000  16638.4 
Rep.Nitrogen  141967.9  10.000  -51903.0 
Rep.Nitrogen.Variety  349579.8  36.000  349579.8 

  

Clearly the interpretation comes down to the fact that the response of rice to 
increasing amounts of nitrogen differs among the varieties (F=13.22, P<0.001). 

A plot of means makes this very clear. The optimal amount of N to use clearly changes with the 

variety planted, with IR8 no worse than the others for all varieties. 

 

The stratum variances illustrate an important feature of split-plot experiments. Intuitively, and 

mathematically, we would expect that the block m.s. would be larger than the whole-plot 
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Residual m.s., and that the whole-plot Residual m.s. would be larger than the split-plot 

Residual m.s.. In this experiment, the whole-plot Residual m.s. () is smaller than the split-plot 

Residual m.s.. Split-plots are smaller than whole-plots, so you would expect that variances to 

be based on smaller areas would be smaller than those based on larger areas. The three values 

are 541,288, 141,968 and 349,580. This might necessitate a check on the experiment’s 

protocols. 

Before considering the next design, we look at the standard errors of differences carefully. 

Standard errors of differences of means 
Table Nitrogen Variety Nitrogen   
   Variety   
rep.  12  18  3   
s.e.d.  153.8  197.1  445.5   
d.f.  10  36  43.53   
Except when comparing means with the same level(s) of 
Nitrogen    482.8   
d.f.    36   

 

The column below Nitrogen is used for assessing differences in the overall nitrogen means: 

0 60 90 120 150 180 
4055.8 5478.2 5866.3 5864.4 5812.0 5796.8 

 

There are 10 df for such comparisons. So for example, to compare the means for 60 versus 90 

kg N/ha, a t test would be used, with 

t=
5866.3-5478.2

153.8
= 2.52 

and with df = 10, P = 0.030. A similar calculation could be made for varieties, using an s.e.d. 

value of 197.1 based on 36 df. 
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To compare say Peta with IR8, each with 90 kg N/ha, we are making a comparison at the same 

level of nitrogen, for which s.e.d. = 482.8 with 36 df. For this comparison 

t=
6400-4812

153.8
=3.29 

and with df = 36, P = 0.002. 

To compare say Peta with 90 kg N/ha to Peta with 120 kg N/ha, we are making a comparison at 

a different level of nitrogen, for which s.e.d. = 445.5 with 43.53 df. This is only an approximate t 

value, for which  

t=
4812-3816

445.5
= 2.23 

and with df = 43.53, P = 0.030. 

Alternatively, print out l.s.d. values and use them in a similar way. 

 

Strip-plot (or split-block) design 

The next design is useful when there are two or more treatment factors and the total number 

of treatment combinations is too large to achieve a simple RCB layout. The difference between 

a split-plot and strip-plot design is that, with the latter design, the precision attached to the 

interaction takes precedence over that for both main effects. Recall that in the split-plot 

analysis the df for the split-plot Residual is the same as for the interaction. 
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The design is a three-stage one but results in 4 strata. 

1. Form blocks in the field; these form the first strata. 

2. In each block, form (say) horizontal strips to which one of the treatment factors, A (say) 

with a levels, is randomized into; 

3. Again, in each block, form vertical strips to which the second treatment, B (say) with b 

levels, is applied to. 

Pictorially, randomize the levels of A into these strips: 

     
     
     
     
     

Block 1  Block 2  Block 3 
 

There is one replicate of each A treatment in each of r replicate blocks, hence horizontal strips 

form the replicates that allow A to be tested via an RCB ANOVA structure: 

Component df 
Block stratum  
Block (r-1) 
Block.A stratum  
A (a-1) 
Residual (1) = Block.A (r-1)(a-1) 

 

In GenStat, this part of the Block Structure is Block/A = Block + Block.A. 

Next, randomize the levels of B into these strips: 
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Block 1  Block 2  Block 3 
 

There is one replicate of each B treatment in each of r replicate blocks, hence vertical strips 

form the replicates that allow B to be tested via an RCB ANOVA structure: 

Component df 
Block stratum  
Block (r-1) 
Block.B stratum  
B (b-1) 
Residual (2) = Block.B (r-1)(b-1) 

 

In GenStat, this part of the Block Structure is Block/B = Block + Block.B. There is no hierarchy 

between the two stages of randomization, hence both strata have equal priority in the analysis.  

So to date we have discussed the formation of 3 strata in the analysis, and these are obtained 

in GenStat by combining the two concepts. When a factor occurs twice, the second occurrence 

is simply ignored: 

Block/A + Block/B = (Block + Block.A) + (Block +Block.B) = Block + Block.A + Block.B 

So to the final stratum. 

In each block the two stripping processes give rise to the final field layout. Vertical strips have 

been colored to make identification easier. 
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Block 1  Block 2  Block 3 
 

The intersection of a vertical and horizontal strip is a single plot that received one level of factor 

A and one of factor B. There will be one replicate of each AB combination, one from each block. 

So the 3-stage randomization has induced a fourth stratum. The structure of this stratum could 

be omitted in GenStat (which always allows the final stratum to be omitted, adding it in if it is). 

But we simply provide a term that indexes over all blocks, levels of A and levels of B, so 

Block.A.B. GenStat’s Block Structure is, in full,  Block + Block.A + Block.B + Block.A.B. 

However, we have seen that A + B + A.B can be simplified to A*B. So using GenStat’s rules, the 

Block Structure can be simplified to  Block/(A*B) 

which intuitively makes sense: firstly form blocks, then within each block form strips into which 

factor A is randomized, at the same time form strips into which factor B is randomized, in such 

a way as they intersect – hence the (A*B) part of the Block Structure, with neither factor A nor 

factor B taking priority.  

So the structure of the ANOVA is the following. The order of the Block.A and Block.B strata 

depends only on the order the two factors are entered in the model; one is not split within the 

other, they are both stripped within blocks and both are at equal levels in the analysis. 
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Component df 
Block stratum  
Block (r-1) 
Block.A stratum  
A (a-1)  
Residual (1) = Block.A (r-1)(a-1)  
Block.B stratum  
B (b-1)  
Residual (2) = Block.B (r-1)(b-1)  
Block.A.B stratum  
A.B (b-1)  
Residual (3) = Block.A.B (r-1)(a-1)(b-1)  

 

Grain yield (kg/ha) of rice with 6 varieties and 3 levels of nitrogen, set out in 3 blocks as a 

strip plot, Page 110 of G&G 

 Block 1 Block 2 Block 3 
N (kg/ha) IR8 

0 2373 3958 4384 
60 4076 6431 4889 

120 7254 6808 8582 
 IR127-80 

0 4007 5795 5001 
60 5630 7334 7177 

120 7053 8284 6297 
 IR305-4-12 

0 2620 4508 5621 
60 4676 6672 7019 

120 7666 7328 8611 
 IR400-2-5 

0 2726 5630 3821 
60 4838 7007 4816 

120 6881 7735 6667 
 IR665-58 

0 4447 3276 4582 
60 5549 5340 6011 

120 6880 5080 6076 
 Peta 

0 2572 3724 3326 
60 3896 2822 4425 

120 1556 2706 3214 
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Analysis of variance 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  9220962.  4610481.     
  
Rep.Nitrogen stratum 
Nitrogen 2  50676061.  25338031.  34.07  0.003 
Residual 4  2974908.  743727.  1.81   
  
Rep.Variety stratum 
Variety 5  57100201.  11420040.  7.65  0.003 
Residual 10  14922619.  1492262.  3.63   
  
Rep.Nitrogen.Variety stratum 
Nitrogen.Variety 10  23877979.  2387798.  5.80 <.001 
Residual 20  8232917.  411646.     
  
Total 53  167005649.       
  
  
Message: the following units have large residuals. 
Rep 1 Nitrogen 120 Variety Peta    -901.  s.e.   390. 
Rep 2 Nitrogen 60 Variety IR8    818.  s.e.   390. 
Rep 2 Nitrogen 60 Variety Peta    -1005.  s.e.   390. 
  
  

Tables of means 
  
Variate: Yield 
  
Grand mean  5290.  
  
 Nitrogen  0  60  120 
   4021.  5478.  6371. 
  
 Variety  IR127-80  IR305-4-12  IR400-2-5  IR665-58  IR8  Peta 
   6286.  6080.  5569.  5249.  5417.  3138. 
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 Nitrogen Variety  IR127-80  IR305-4-12  IR400-2-5  IR665-58  IR8 
  0   4934.  4250.  4059.  4102.  3572. 
  60   6714.  6122.  5554.  5633.  5132. 
  120   7211.  7868.  7094.  6012.  7548. 
   
 Nitrogen Variety  Peta         
  0   3207.         
  60   3714.         
  120   2492.         
  
 
 
  

Standard errors of differences of means 
  
Table Nitrogen Variety Nitrogen   
   Variety   
rep.  18  9  3   
s.e.d.  287.5  575.9  742.6   
d.f.  4  10  22.29   
Except when comparing means with the same level(s) of 
Nitrogen    717.3   
d.f.    20.90   
Variety    558.0   
d.f.    22.43   
  
 

Least significant differences of means (5% level) 
  
Table Nitrogen Variety Nitrogen   
   Variety   
rep.  18  9  3   
l.s.d.  798.1  1283.1  1538.9   
d.f.  4  10  22.29   
Except when comparing means with the same level(s) of 
Nitrogen    1492.2   
d.f.    20.90   
Variety    1155.9   
d.f.    22.43   
 
  

Estimated stratum variances 
 
Stratum variance  effective d.f.   variance component  
Rep  4610481.2  2.000  154785.5 
Rep.Nitrogen  743727.0  4.000  55346.9 
Rep.Variety  1492261.9  10.000  360205.4 
Rep.Nitrogen.Variety  411645.9  20.000  411645.9 
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Once again the interaction between varieties and nitrogen rates is highly significant (F-5.80, 

P<0.001). As with the previous data it is variety Peta whose response to N is different, as the 

plot of two-way means shows: 

 

Notice also that none of the pairwise comparisons of these means is strictly a t test: 

 To compare two variety means at a particular rate of N uses an s.e.d. value of 717.2 and 

the approximate t test would be based on 20.90 df; 

 To compare two nitrogen means for a particular variety uses an s.e.d. value of 558.0 and 

the approximate t test would be based on 22.43 df; 

 To compare two variety means, each at a different rate of N, uses an s.e.d. value of 

742.6 and the approximate t test would be based on 22.29 df (though such a 

comparison would be unusual in practice). 
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Split-split-plot design in an RCB layout 

The next design is useful when there are three or more treatment factors and too many 

combinations of two factors to form simple split plots. Generally, the factor applied to whole-

plots is the least important treatment, or a treatment with levels whose means are quite 

different. The field layout comes about as a four stage randomization. 

 At stage 1, identify and construct an appropriate number of blocks; 

 At stage 2, form an appropriate number of large whole-plots in each block, to which one 

of the three treatment factors (the whole-plot treatment) is to be applied to; 

 At stage 3, form an appropriate number of smaller split-plots in each whole-plot, to 

which a second treatment factor (the split-plot treatment) is to be applied to; 

 At stage 4, form an appropriate number of even smaller split-split-plots in each split-

plot, to which the last of the three treatment factors (the split-split-plot treatment) is to 

be applied to. 
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A feasible diagrammatic representation of this for one of the blocks is this: 

Stage 1  Stage 2  Stage 3  Stage 4 
Block 1  Block 1  Block 1  Block 1 

                           
                         
                          

                         
                         
                         

                          
                         
                          

                         
                         
                         

                          
                         
                           

 

There are four strata in such a design. As we’ve seen, the Block Stratum contains just the Block 

component: there are no replicates of each block so there is no error term for constructing an F 

test for blocks. The other three strata do produce an error term, so we’ll have three Residual 

components to define, each producing a different estimate of the variance of the yield from a 

plot in each stratum. But remember that blocks are generally regarded as random, so the Block 

m.s. does produce a Block Stratum Variance which can be printed as an option in the ANOVA. 

Back to the randomization. Page 140 of G&G describes this nicely using an example with 3 

replicate blocks, 5 rates of a nitrogen fertilizer as the whole-plot treatment, 3 management 

practices as the split treatment, and 3 varieties as the split-split treatment. Using the following 

shading patterns: 
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N1 N2 N3 N4 N5  M1 M2 M3 
                 

 

with red numbers for the varieties, the stages of randomization in their first replicate block are: 

Stage 1  Stage 2  Stage 3  Stage 4 
Block 1  Block 1  Block 1  Block 1 

                     1 3 3 
                    3 1 2 
                     2 2 1 

                     2 1 1 
                     1 3 2 
                     3 2 3 

                     1 1 3 
                     3 2 2 
                     2 3 1 

                     1 1 3 
                     2 3 1 
                     3 2 2 

                     3 1 3 
                     1 2 1 
                      2 2 2 

So what has been done in the field? 

1. Firstly form blocks, so the Block Structure in GenStat starts with Block. 

2. Next form whole-plots within each block, so Block/whole-plot. 

3. Next form split-plots within each whole-plot, so Block/whole-plot/split-plot. 

4. Finally form split-split-plots within each split-plot, so the final short-cut form of the 

Block Structure is Block/whole-plot/split-plot/split-split-plot. 
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Since the factor Nitrogen indexes over the number of whole-plots, we don’t need a separate 

factor to identify the whole-plots, so in GenStat’s Block Structure we can replace the factor 

whole-plot with Nitrogen. 

Similarly, the factor Management can be used instead of a separate factor split-plot, and 

Variety can be used instead of a separate factor split-split-plot. So for a split-split plot analysis 

of variance an alternative Block Structure can use the actual treatment factors applied to each 

level: Block/Nitrogen/Management/Variety, or, since the final stratum can always be dropped, 

simply Block/Nitrogen/Management. 

Using the full structure and GenStat’s rule that A/B is a shortcut for A+A.B, we can expand the 

full Block Structure step by step and removing the repeated factor Block: 

Block/Nitrogen/(Management/Variety) = Block/Nitrogen/(Management+ Management.Variety) 

= Block/Nitrogen+ Block/Nitrogen.(Management+ Management.Variety) 

= (Block+ Block.Nitrogen)+(Block+ Block.Nitrogen.(Management+ Management.Variety)) 

= Block+ Block.Nitrogen+Block.Nitrogen.Management+ Block.Nitrogen.Management.Variety)) 

These are the four strata in the ANOVA, each with a different variance. The variety means are 

means of the individual smallest sized plots (the split-split plots) in the field, and hence the 

residual from the Block.Nitrogen.Management.Variety stratum is used to test the varieties. But 

the same is true for any mean involving varieties, whether they be two-way means (nitrogen × 

variety and management × variety means) or the three-way,nitrogen × management × variety 

means. These components all are tested in the lowest level stratum. 
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The management means, as well as the nitrogen × management means, are mean yields that 

had one management practice (or, in the case of the two-way means one management practice 

at one nitrogen rate applied). These are all based on split-split plots from Stage 3 of the field 

management, and both M and N.M components are tested using the residual from that 

stratum. So you can see that  

1. the whole-plot treatment Nitrogen is tested against the residual from the Block.Nitrogen 

stratum,  

2. the split-plot treatment Management, as well as the interaction of Nitrogen and 

Management, are tested against the residual from the Block.Nitrogen.Management 

stratum, and 

3. the split-split-plot treatment Variety, as well as interactions involving Variety (so 

Nitrogen.Variety, Management.Variety and Management.Nitrogen.Variety), are tested 

against the residual from the Block.Nitrogen.Management.Variety stratum. 

Using obvious notation for the numbers of levels (r=3 replicate blocks, n=5 levels of N, m=3 

levels of management M and v=3 varieties V) the split-split-plot analysis. 
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Component df 
Block stratum  
Block (r-1)=2 
Block.Nitrogen stratum  
N (n-1) = 4 
Residual (1) = Block.N (r-1)(n-1) = 8 
Block.Nitrogen.Management stratum  
M (m-1) = 2 
N.M (n-1)(m-1) = 8 
Residual (2) n(r-1)(m-1) = 20 
Block.Nitrogen.Management.Variety stratum  
V (v-1) = 2 
N.V (n-1)(v-1) = 8 
M.V (m-1)(v-1) = 4 
N.M.V (n-1)(m-1)(v-1) = 16 
Residual (3) nm(r-1)(v-1) = 60 

 

Grain yields (t/ha) of 3 rice varieties under 3 management practices and 5 levels of nitrogen, 

using a split-split plot RCB, from G&G Page 143; nitrogen is whole-plot treatment, 

management the split-plot treatment and variety the split-split treatment 

 

 Variety 1 Variety 2 Variety 3 

 replicate replicate replicate 
Management 1 2 3 1 2 3 1 2 3 

 0 kg N/ha 
Minimum 3.320 3.864 4.507 6.101 5.122 4.815 5.355 5.536 5.244 
Optimum 3.766 4.311 4.875 5.096 4.873 4.166 7.442 6.462 5.584 
Intensive 4.660 5.915 5.400 6.573 5.495 4.225 7.018 8.020 7.642 

 50 kg N/ha 
Minimum 3.188 4.752 4.756 5.595 6.780 5.390 6.706 6.546 7.092 
Optimum 3.625 4.809 5.295 6.357 5.925 5.163 8.592 7.646 7.212 
Intensive 5.232 5.170 6.046 7.016 7.442 4.478 8.480 9.942 8.714 

 80 kg N/ha 
Minimum 5.468 5.788 4.422 5.442 5.988 6.509 8.452 6.698 8.650 
Optimum 5.759 6.130 5.308 6.398 6.533 6.569 8.662 8.526 8.514 
Intensive 6.215 7.106 6.318 6.953 6.914 7.991 9.112 9.140 9.320 

 110 kg N/ha 
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Minimum 4.246 4.842 4.863 6.209 6.768 5.779 8.042 7.414 6.902 
Optimum 5.255 5.742 5.345 6.992 7.856 6.164 9.080 9.016 7.778 
Intensive 6.829 5.869 6.011 7.565 7.626 7.362 9.660 8.966 9.128 

 140 kg N/ha 
Minimum 3.132 4.375 4.678 6.860 6.894 6.573 9.314 8.508 8.032 
Optimum 5.389 4.315 5.896 6.857 6.974 7.422 9.224 9.680 9.294 
Intensive 5.217 5.389 7.309 7.254 7.812 8.950 10.360 9.896 9.712 

 

The ANOVA is obtained easily enough: 

 
 

Analysis of variance 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  0.7320  0.3660  0.66   
  
Rep.Nitrogen stratum 
Nitrogen 4  61.6408  15.4102  27.70 <.001 
Residual 8  4.4514  0.5564  2.13   
  
Rep.Nitrogen.Management stratum 
Management 2  42.9361  21.4681  82.00 <.001 
Nitrogen.Management 8  1.1030  0.1379  0.53  0.823 
Residual 20  5.2363  0.2618  0.53   
  
Rep.Nitrogen.Management.Variety stratum 
Variety 2  206.0132  103.0066  207.87 <.001 
Nitrogen.Variety 8  14.1445  1.7681  3.57  0.002 
Management.Variety 4  3.8518  0.9629  1.94  0.115 
Nitrogen.Management.Variety 16  3.6992  0.2312  0.47  0.954 
Residual 60  29.7325  0.4955     
  
Total 134  373.5407       
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Message: the following units have large residuals. 
  
Rep 3 Nitrogen 140    0.386  s.e.   0.182 
  
Rep 1 Nitrogen 0 Management Intensive Variety V2  1.164  s.e.   0.469 
Rep 3 Nitrogen 50 Management Intensive Variety V2  -1.300  s.e.   0.469 
  
  

Tables of means 
  
Variate: Yield 
  
Grand mean  6.554  
  
 Nitrogen  0  50  80  110  140 
   5.385  6.220  6.996  6.937  7.234 
  
 Management  Intensive  Minimum  Optimum 
   7.277  5.900  6.486 
  
 Variety  V1  V2  V3 
   5.127  6.396  8.140 
  
 Nitrogen Management  Intensive  Minimum  Optimum 
  0   6.105  4.874  5.175 
  50   6.947  5.645  6.069 
  80   7.674  6.380  6.933 
  110   7.668  6.118  7.025 
  140   7.989  6.485  7.228 
  Nitrogen Variety  V1  V2  V3 
  0   4.513  5.163  6.478 
  50   4.764  6.016  7.881 
  80   5.835  6.589  8.564 
  110   5.445  6.925  8.443 
  140   5.078  7.288  9.336 
  
 Management Variety  V1  V2  V3 
 Intensive   5.912  6.910  9.007 
 Minimum   4.413  6.055  7.233 
 Optimum   5.055  6.223  8.181 
  
 Nitrogen Management Variety  V1  V2  V3 
  0 Intensive   5.325  5.431  7.560 
  Minimum   3.897  5.346  5.378 
  Optimum   4.317  4.712  6.496 
  50 Intensive   5.483  6.312  9.045 
  Minimum   4.232  5.922  6.781 
  Optimum   4.576  5.815  7.817 
  80 Intensive   6.546  7.286  9.191 
  Minimum   5.226  5.980  7.933 
  Optimum   5.732  6.500  8.567 
  110 Intensive   6.236  7.518  9.251 
  Minimum   4.650  6.252  7.453 
  Optimum   5.447  7.004  8.625 
  140 Intensive   5.972  8.005  9.989 
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  Minimum   4.062  6.776  8.618 
  Optimum   5.200  7.084  9.399 
  

Standard errors of differences of means 
  
Table Nitrogen Management Variety Nitrogen   
    Management   
rep.  27  45  45  9   
s.e.d.  0.2030  0.1079  0.1484  0.2828   
d.f.  8  20  60  22.26   
Except when comparing means with the same level(s) of 
Nitrogen     0.2412   
d.f.     20   
  
Table Nitrogen Management Nitrogen     
 Variety Variety Management     
   Variety     
rep.  9  15  3     
s.e.d.  0.3386  0.2360  0.5479     
d.f.  43.48  79.29  82.25     
Except when comparing means with the same level(s) of 
Nitrogen  0.3318   0.5277     
d.f.  60   79.29     
Management   0.2570      
d.f.   60      
Nitrogen.Management 
    0.5748     
d.f.    60     
Nitrogen.Variety 
    0.5277     
d.f.    79.29     
  
 

Least significant differences of means (5% level) 
  
Table Nitrogen Management Variety Nitrogen   
    Management   
rep.  27  45  45  9   
l.s.d.  0.4682  0.2250  0.2969  0.5862   
d.f.  8  20  60  22.26   
Except when comparing means with the same level(s) of 
Nitrogen     0.5032   
d.f.     20   
  
Table Nitrogen Management Nitrogen     
 Variety Variety Management     
   Variety     
rep.  9  15  3     
l.s.d.  0.6826  0.4697  1.0900     
d.f.  43.48  79.29  82.25     
Except when comparing means with the same level(s) of 
Nitrogen  0.6638   1.0502     
d.f.  60   79.29     
Management   0.5142      
d.f.   60      
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Nitrogen.Management 
    1.1497     
d.f.    60     
Nitrogen.Variety 
    1.0502     
d.f.    79.29     
 
  

Estimated stratum variances 
  
Variate: Yield 
  
Stratum variance  effective d.f.   variance component  
Rep  0.3660  2.000  -0.0042 
Rep.Nitrogen  0.5564  8.000  0.0327 
Rep.Nitrogen.Management  0.2618  20.000  -0.0779 
Rep.Nitrogen.Management.Variety  0.4955  60.000  0.4955 

 

Interpretation: 

 The stratum variances indicate less variation in yield than the experimenters might have 

expected. The Block m.s. is smaller than the whole-plot Residual m.s. (0.3660 compared 

to 0.5564) and results in a negative estimate of variance – which simply implies there is 

no change in yield across blocks. Remember that blocks are generally used to control for 

variance, and the assumption is that plots in each block have some differing effect on 

growing conditions. 

 

 Note also that that the variance of the split-split plots is larger than that of the split-

plots (0.4955 compared to 0.2618), again something that is not expected practically or 

mathematically. 

 

 There is no 3-factor interaction (F=0.47, P=0.954). Of the two factor interactions, the 

effect on rice of nitrogen changes with the variety (F=3.57, P=0.002). The first of these 
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two statements implies that the interaction of nitrogen and variety is consistent across 

management practices. 

 

 The management practices have a definite effect on rice yields (F=82.0, P<0.001), with 

intensive farming producing significantly better yields (mean yields are Management: 

7.277, Optimum: 6.486, Minimum: 5.900 with an l.s.d. value of 0.227). 

 

 The plot of three-way means illustrates these findings. The three-factor interaction 

compares the trends in N for the three varieties across the three management practices, 

so graphically all three plots should appear very similar (within statistical variation): 
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Since this interaction is not significant, we can present a single plot with means averaged across 

management practices: 
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 Remember also that comparisons between means are judged using l.s.d. values, or P 

values calculated by taking mean differences and dividing by the s.e.d. values. In these 

two tables in GenStat’s output, only those comparisons whose degrees of freedom are 

integers are strictly t tests; the rest are approximations.  

Strip-split-plot design 

The next design is a refinement on the strip-plot design to allow for a third splitting 

of the small units resulting from that design. Firstly, recall that for the strip-plot 

design we have this layout with 4 strata (the strata being blocks, horizontal strips in 

each block, vertical strips in each block and the intersection of a vertical and 

horizontal strip in each block). Here is a typical block: 

GenStat’s Block Structure for the strip-plot design is: 

Block + Block.A + Block.B + Block.A.B = Block/(A*B) 

3
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The refinement to this design that gives rise to the new design allowing a third splitting of these 

small units into which a third treatment is randomized.  The dataset on Page 155 of G&G has 6 

varieties (V) applied to horizontal strips, 3 nitrogen rates (N) applied to vertical strips and 2 

planting methods (V) randomized into every intersection plot, with three block replicates (3 

such plots are circles to highlight the independent randomizations taking place in these 

intersection plots): 

 Block 1  Block 2  Block 3 

 N1 N3 N2  N3 N2 N1  N3 N1 N2 

V6 
P2 P1 P2 V4 

P2 P1 P1 V5 
P2 P2 P2 

P1 P2 P1 P1 P2 P2 P1 P1 P1 

V5 
P2 P1 P1 V2 

P1 P2 P2 V2 
P1 P2 P2 

P1 P2 P2 P2 P1 P1 P2 P1 P1 

V3 
P1 P2 P2 V6 

P2 P2 P2 V3 
P1 P1 P2 

P2 P1 P1 P1 P1 P1 P2 P2 P1 

V2 
P1 P2 P1 V23 

P1 P1 P2 V4 
P1 P1 P2 

P2 P1 P2 P2 P2 P1 P2 P2 P1 

V4 
P2 P1 P2 V1 

P1 P2 P1 V6 
P1 P2 P1 

P1 P2 P1 P2 P1  P2 P1 P2 

V1 
P1 P2 P2 V5 

P1 P2 P2 V1 
P1 P1 P2 

P2 P1 P1 P2 P1 P1 P2 P2 P1 

 

So how is GenStat’s Block Structure modified? The fact is that the current structure 

Block/(Variety*Nitrogen) defines the first 4 strata (blocks, horizontal plots to which varieties are 

randomized, vertical plots to which nitrogen rates are randomized and intersection plots which 

form the replicates for the interaction of varieties with nitrogen) and, using GenStat’s rule that 

the last stratum can be omitted, Block/(Variety*Nitrogen) is sufficient to define the analysis. 
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Strictly speaking, though, each intersection plot is split into small units for the randomization of 

planting methods, and, using the same intuitive approach that GenStat employs, this implies 

that the full Block Structure with all 5 strata defined is: 

Block/(Variety*Nitrogen)/Planting_method 

So this philosophy intuitively leads to F tests in separate 
strata: 

1. Blocks are unreplicated and appear (alone) in the first 

stratum. 

2. Varieties are randomized into horizontal plots, one 

replicate of each variety in each block (just as in an 

RCB), so the main effect for Variety is tested in a 

stratum using the Rep.Variety residual to form the F 

test. 

3. Similarly nitrogen rates are randomized into vertical 

plots (just as in an RCB), one replicate of each nitrogen 

rate in each block, so the main effect for Nitrogen is 

tested in a separate stratum using the Rep.Nitrogen 

residual to form the F test. 

4. The intersection plots had a particular variety and nitrogen rate applied, so these units form 

the replicates for testing the Variety.Nitrogen interaction, the Residual being the interaction 

Block.Variety.Nitrogen and is used to construct the F test for the Variety.Nitrogen 

interaction. 

5. The main effect (Planting method) and any interaction involving planting method are based 

on split-plot replicates, and hence these all appear in a final split-plot unit stratum. 

1. Block stratum 
Block (b-1) 
 

2. Block.Variety stratum 
Variety (v-1) 
Residual = Block.Variety (b-1)(v-1) 
 

3. Block.Nitrogen stratum 
Nitrogen (n-1) 
Residual = Block. Nitrogen (b-1)(n-1) 
 

4. Block.Variety.Nitrogen stratum 
Variety.Nitrogen (v-1)(n-1) 
Residual (b-1)(v-1)(n-1) 
 

5. Block.Variety.Nitrogen.Planting stratum 
Planting (p-1) 
Variety.Planting (v-1)(p-1) 
Nitrogen.Planting (n-1)(p-1) 
Variety.Nitrogen.Planting (v-1)(n-1)(p-1) 
Residual vn(b-1)(p-1) 
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Dataset from G&G, Page 155, rearranged in field layout (assuming the randomized layout above 

is the one actually used for the experiment). N represents nitrogen rates 0, 60, 120 kg N / ha; 

P1 is broadcast, P2 transplanted; the 6 varieties are IR8, IR127-8-1-10, IR305-4-12-1-3, IR400-2-

5-3-3-2, IR665-58 and Peta: 

 N1 N3 N2  N3 N2 N1  N3 N1 N2 

V6 

4535 
P2 

1556 
P1 

4627 
P2 

V4 

9838 
P2 

7007 
P1 

5630 
P1 

V5 

6564 
P2 

3739 
P2 

4666 
P2 

2572 
P1 

5374 
P2 

3896 
P1 

7735 
P1 

6928 
P2 

6200 
P2 

6076 
P1 

4582 
P1 

6011 
P1 

V5 

4655 
P2 

6880 
P1 

5549 
P1 

V2 

8284 
P1 

7424 
P2 

4885 
P2 

V2 

6297 
P1 

4583 
P2 

5377 
P2 

4447 
P1 

6995 
P2 

4646 
P2 

7648 
P2 

7334 
P1 

5795 
P1 

5736 
P2 

5001 
P1 

7177 
P1 

V3 

2620 
P1 

8632 
P2 

4946 
P2 

V6 

7218 
P2 

4461 
P2 

5457 
P2 

V3 

8611 
P1 

5621 
P1 

6142 
P2 

4527 
P2 

7666 
P1 

4676 
P1 

2706 
P1 

2822 
P1 

3724 
P1 

7416 
P2 

3628 
P2 

7019 
P1 

V2 

4007 
P1 

6440 
P2 

5630 
P1 

V3 

7328 
P1 

6672 
P1 

4866 
P2 

V4 

6667 
P1 

3821 
P1 

4829 
P2 

4035 
P2 

7053 
P1 

3728 
P2 

7101 
P2 

7611 
P2 

4508 
P1 

7253 
P2 

4038 
P2 

4816 
P1 

V4 

5274 
P2 

6881 
P1 

4878 
P2 

V1 

6808 
P1 

7502 
P2 

3958 
P1 

V6 

3214 
P1 

3537 
P2 

4425 
P1 

2726 
P1 

6545 
P2 

4838 
P1 

6353 
P2 

6431 
P1 

3528 
P2 

6369 
P2 

3326 
P1 

4774 
P2 

V1 

2373 
P1 

6661 
P2 

3085 
P2 

V5 

5080 
P1 

5006 
P2 

2796 
P2 

V1 

8582 
P1 

4384 
P1 

4362 
P2 

2293 
P2 

7254 
P1 

4076 
P1 

4486 
P2 

5340 
P1 

3276 
P1 

7759 
P2 

2538 
P2 

4889 
P1 
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Analysis of variance 
  
Variate: Yield 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Block stratum 2  15289498.  7644749.     
  
Block.Variety stratum 
Variety 5  49119270.  9823854.  3.68  0.038 
Residual 10  26721828.  2672183.  2.80   
  
Block.Nitrogen stratum 
Nitrogen 2  116489166.  58244583.  36.62  0.003 
Residual 4  6361491.  1590373.  1.66   
  
Block.Variety.Nitrogen stratum 
Variety.Nitrogen 10  24595731.  2459573.  2.57  0.034 
Residual 20  19106733.  955337.  2.27   
  
Block.Variety.Nitrogen.Planting_Method stratum 
Planting_Method 1  723079.  723079.  1.71  0.199 
Variety.Planting_Method 5  23761441.  4752288.  11.27 <.001 
Nitrogen.Planting_Method 2  2468132.  1234066.  2.93  0.066 
Variety.Nitrogen.Planting_Method 10  7512072.  751207.  1.78  0.100 
Residual 36  15179354.  421649.     
  
Total 107  307327795.       
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Message: the following units have large residuals. 
  
Block 2 Variety IR665-58    -1168.  s.e.   497. 
  
Block 1 Variety Peta Nitrogen 120  -878.  s.e.   421. 
Block 2 Variety IR8 Nitrogen 60  924.  s.e.   421. 
Block 2 Variety IR8 Nitrogen 120  -882.  s.e.   421. 
Block 2 Variety Peta Nitrogen 60  -1159.  s.e.   421. 
  
Block 1 Variety IR305-4-12-1-13 Nitrogen 0 Planting_Method Broadcast    -908.  s.e.   375. 
Block 1 Variety IR305-4-12-1-13 Nitrogen 0 Planting_Method Transplanted    908.  s.e.   375. 
Block 3 Variety IR305-4-12-1-13 Nitrogen 0 Planting_Method Broadcast    1042.  s.e.   375. 
Block 3 Variety IR305-4-12-1-13 Nitrogen 0 Planting_Method Transplanted    -1042.  s.e.   375. 
  
  

Tables of means 
  
Variate: Yield 
  
Grand mean  5372.  
  
 Variety  IR8  IR127-8-1-10  IR305-4-12-1-13  IR400-2-5-3-3-2 
   5158.  5913.  6088.  5884. 
   
 Variety  IR665-58  Peta     
   5044.  4144.     
  
 Nitrogen  0  60  120 
   4097.  5378.  6641. 
  
 Planting_Method  Broadcast  Transplanted 
   5290.  5454. 
  
 Variety Nitrogen  0  60  120 
 IR8   3179.  5058.  7236. 
 IR127-8-1-10   4718.  6112.  6910. 
 IR305-4-12-1-13   4295.  6178.  7792. 
 IR400-2-5-3-3-2   4615.  5549.  7486. 
 IR665-58   3916.  5203.  6013. 
 Peta   3859.  4168.  4406. 
  
 Variety Planting_Method  Broadcast  Transplanted 
 IR8   5417.  4898. 
 IR127-8-1-10   6286.  5540. 
 IR305-4-12-1-13   6080.  6097. 
 IR400-2-5-3-3-2   5569.  6198. 
 IR665-58   5249.  4839. 
 Peta   3138.  5150. 
  
 Nitrogen Planting_Method  Broadcast  Transplanted 
 0   4021.  4173. 
 60   5478.  5277. 
 120   6371.  6910. 
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 Variety Nitrogen Planting_Method  Broadcast  Transplanted 
 IR8 0   3572.  2786. 
  60   5132.  4983. 
  120   7548.  6924. 
 IR127-8-1-10 0   4934.  4501. 
  60   6714.  5510. 
  120   7211.  6608. 
 IR305-4-12-1-13 0   4250.  4340. 
  60   6122.  6233. 
  120   7868.  7716. 
 IR400-2-5-3-3-2 0   4059.  5171. 
  60   5554.  5545. 
  120   7094.  7879. 
 IR665-58 0   4102.  3730. 
  60   5633.  4773. 
  120   6012.  6015. 
 Peta 0   3207.  4510. 
  60   3714.  4621. 
  120   2492.  6320. 
 

Standard errors of means 
Table Variety NitrogenPlanting_Method  
    Variety   
    Nitrogen   
rep.  18  36  54  6   
e.s.e.  385.3  210.2  88.4  521.8   
d.f.  10  4  36  24.63   
Except when comparing means with the same level(s) of 
Variety     420.6   
d.f.     22.86   
Nitrogen     504.6   
d.f.     23.42   
  
Table Variety Nitrogen Variety     
 Planting_Method  
 Planting_Method  
   Nitrogen     
  Planting_Method     
rep.  9  18  3     
e.s.e.  414.6  236.4  585.3     
d.f.  13.31  6.35  37.29     
Except when comparing means with the same level(s) of 
Variety  216.4   497.1     
d.f.  36   40.57     
Nitrogen   153.1  570.0     
d.f.   36  36.34     
Variety.Nitrogen 
    374.9     
d.f.    36     
Variety.Planting_Method 
    497.1     
d.f.    40.57     
Nitrogen.Planting_Method 
    570.0     
d.f.    36.34     



88 | P a g e  
                                                                             ©Agro-Tech, Inc. and Statistical Advisory & Training Services Pty Ltd  

Standard errors of differences of means 
  
Table Variety NitrogenPlanting_Method  
    Variety   
    Nitrogen   
rep.  18  36  54  6   
s.e.d.  544.9  297.2  125.0  737.9   
d.f.  10  4  36  24.63   
Except when comparing means with the same level(s) of 
Variety     594.7   
d.f.     22.86   
Nitrogen     713.6   
d.f.     23.42   
  
Table Variety Nitrogen Variety     
 Planting_Method  
 Planting_Method  
   Nitrogen     
  Planting_Method     
rep.  9  18  3     
s.e.d.  586.3  334.3  827.7     
d.f.  13.31  6.35  37.29     
Except when comparing means with the same level(s) of 
Variety  306.1   703.0     
d.f.  36   40.57     
Nitrogen   216.4  806.1     
d.f.   36  36.34     
Variety.Nitrogen    530.2     
d.f.    36     
Variety.Planting_Method    703.0     
d.f.    40.57     
Nitrogen.Planting_Method    806.1     
d.f.    36.34     
  
  
  
 

Estimated stratum variances 
  
Variate: Yield 
  
Stratum variance  effective d.f.   variance component  
Block  7644749.1  2.000  120486.9 
Block.Variety  2672182.8  10.000  286141.0 
Block.Nitrogen  1590372.8  4.000  52919.7 
Block.Variety.Nitrogen  955336.7  20.000  266844.0 
Block.Variety.Nitrogen.Planting_Method  421648.7  36.000  421648.7 

 

  



89 | P a g e  
©Agro-Tech, Inc. and Statistical Advisory & Training Services Pty Ltd  

Interpretation: 

1. The large residuals flagged at the end of the ANOVA are informative. The yield in block 3 

that grew IR305-4-12-1-13 (V2) with no nitrogen is extraordinarily large (5621 kg N / ha); 

the mean for the two planting methods with this combination is only 4,250-4,340 kg N / ha. 

The standardized residual for these two plots is 1042/375 = 2.78; only 0.5% of all residuals 

should be this extreme. However, we have no way of checking the data, so take the analysis 

on face value. 

 

2. The significant main effects for variety and nitrogen are irrelevant given the significant two-

way interactions (and no significant three-way interaction). In fact these varieties and 

nitrogen rates were chosen presumably in the knowledge that there were differences, and 

that may be (partly) why they were chosen as the two whole-plot treatments to apply to 

horizontal and vertical strips. Attention should focus on whether these expected differences 

were consistent across the levels of the other factor.  

 

3. The nitrogen effect is different across varieties (P=0.034) and almost significant across 

planting methods (P=0.066). A plot of means is as follows: 
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Clearly there is a strong linear trend for both planting methods, a feature that could have been 

extracted as part of the ANOVA: 
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Analysis of variance 
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Block stratum 2  15289498.  7644749.     
  
Block.Variety stratum 
Variety 5  49119270.  9823854.  3.68  0.038 
Residual 10  26721828.  2672183.  2.80   
  
Block.Nitrogen stratum 
Nitrogen 2  116489166.  58244583.  36.62  0.003 
  Lin 1  116487216.  116487216.  73.25  0.001 
  Deviations 1  1950.  1950.  0.00  0.974 
Residual 4  6361491.  1590373.  1.66   
  
Block.Variety.Nitrogen stratum 
Variety.Nitrogen 10  24595731.  2459573.  2.57  0.034 
  Variety.Lin 5  22843042.  4568608.  4.78  0.005 
  Deviations 5  1752688.  350538.  0.37  0.865 
Residual 20  19106733.  955337.  2.27   
  
Block.Variety.Nitrogen.Planting_Method stratum 
Planting_Method 1  723079.  723079.  1.71  0.199 
Variety.Planting_Method 5  23761441.  4752288.  11.27 <.001 
Nitrogen.Planting_Method 2  2468132.  1234066.  2.93  0.066 
  Lin.Planting_Method 1  674154.  674154.  1.60  0.214 
  Deviations 1  1793978.  1793978.  4.25  0.046 
Variety.Nitrogen.Planting_Method 10  7512072.  751207.  1.78  0.100 
  Variety.Lin.Planting_Method 5  4382437.  876487.  2.08  0.091 
  Deviations 5  3129635.  625927.  1.48  0.219 
Residual 36  15179354.  421649.     

 

So basically the linear slope for N is the same for the two planting methods (P=0.214), however 

there is a difference in the non-linear trend (this is marked as Deviations in the 

Nitrogen.Planting_Method interaction. Deviations just represents all other terms that have not 

been modelled. With 3 nitrogen rates there can only be a linear and a quadratic component, 

since a quadratic equation will pass through three points perfectly. Here we fitted just the 

linear term – via POL(Nitrogen;1).) The difference in the quadratic component is visible in the 

previous means plot. 
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4. There is a strongly significant difference in the means for broadcasting versus transplanting 

across the varieties (P<0.001), as seen in the means plot: 

 

5. There is also a significant difference in response of the varieties to nitrogen (P=0.034). It is 

clear that not all slopes are the same (P=0.005), while there is no evidence of any particular 

quadratic component overall (P=0.974), or across varieties (P=0.865): 
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6. One of the drawbacks of these stratified designs is that simple comparisons of means are, in 

many cases, not exactly t tests. This can be picked up from the s.e.d. and l.s.d. values. Any 

comparison that shows in GenStat’s output with degrees of freedom that is not an integer 

results from a formula in a Satterthwaite-like approximate t test. In fact, for this design, few 

comparisons between two-way means are exact t tests, so care needs to be used when 

selecting the correct s.e.d. value to use for a particular comparison. For example, to test the 

mean difference between broadcast and transplant methods across the varieties, you 

would use 414.6 on 13.31 df for each of these differences (because the same varieties is 

used for each difference): 

 Planting Method  
Variety Broadcast Transplanted difference 
IR8 5417 4898 519 
IR127-8-1-10 6286 5540 746 
IR305-4-12-1-13 6080 6097 -17 
IR400-2-5-3-3-2 5569 6198 -629 
IR665-58 5249 4839 410 
Peta 3138 5150 -2012 

 

However, to compare two varietal means that were both broadcast (or transplanted) the t 

test is approximate, the s.e.d. value to use is 414.6 and there are only 13.31 degrees of 

freedom available for the test  
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Latin Square design 

The next design is useful when there are two fertility gradients in the field. In a way, the LS 

design consists of a single replicate of the strip-plot design just considered.  

Consider the following layout: 

 

  Fertility trend left to right 
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Suppose the trends are such that plots become drier from left to right and top to bottom, so 

that the top left hand area is a higher yielding area, declining towards the bottom right hand 

corner. Now suppose we had randomized 6 replicates of each of 6 treatments (T11 to T6) into 

the field and obtained something like: 

 

  Fertility trend left to right 
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 1 T1 T6 T3 T6 T5 T5 

2 T5 T1 T1 T4 T3 T4 
3 T6 T1 T4 T6 T2 T2 
4 T4 T6 T6 T1 T4 T2 
5 T1 T5 T3 T3 T2 T3 
6 T3 T5 T4 T2 T5 T2 
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A comparison between the mean for T1 and for T6 would be “fair”, because all 6 replicates of 

each treatment were allocated roughly equally to the higher yielding area of the field. Not so a 

comparison between the mean for T1 or for T6 compared to T2 which was (randomly) allocated 

mainly in the lower yielding plots. So, a difference between the mean of T1 and of T2 would not 

reflect the true treatment difference only, but would contain a component of the difference in 

yield due to the higher versus lower yielding areas. 

The only way to be fair for every treatment comparison is to balance the layout so that every 

treatment occurs once in each row and once in each column, so something like: 

  Fertility trend left to right 

  1 2 3 4 5 6 
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 1 T4 T5 T1 T2 T3 T6 
2 T3 T1 T6 T4 T5 T2 
3 T5 T6 T2 T3 T1 T4 
4 T1 T2 T4 T5 T6 T3 
5 T6 T4 T3 T1 T2 T5 
6 T2 T3 T5 T6 T4 T1 

 

Now when you compare the means of T1 and T2, each mean involves the average row fertility 

effect, as well as the average column fertility effect. Consequently, when you calculate the 

mean difference, the average row fertility effect and the average column fertility effect both 

disappear from the difference, leaving behind an estimate of the real difference in means. 

A design balanced in this way is known mathematically as a Latin Square design. Note that to 

achieve such a balance, there must be the same number of replicates as there are treatments. 
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So before looking at experimental data, let’s examine what we do in the field for t treatments. 

 We construct t rows in the field, blocking (allowing) for the trend in that direction. This 

gives rise to a row block stratum, and, as for an RCB ANOVA, will have the Row block 

component alone. 

 

 We next construct t columns in the field, across the rows, blocking for the trend in that 

direction. This gives rise to a column block stratum, and, as for an RCB ANOVA, will have 

the Column block component alone. 

 

 The intersection of the row and column blocks produces t2 plots in the field. 

Mathematicians have shown us how to achieve the appropriate balance of treatments 

so that each treatment occurs once in each row and once in each column. But these 

individual plots are third stratum and allow the treatments to be tested. 

The Block Structure in GenStat comes from what was done in the field: 

Construct row blocks ⇒ Row stratum 

Construct column blocks ⇒ Column stratum 

Plots at the intersection of row blocks and column blocks ⇒ Row.Column stratum 

Combining the 3 strata: Row+Column+Row.Column ⇐ Row*Column using GenStat’s rules. 
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The Latin Square ANOVA would therefore appear like this: 

Component df 
Row stratum  
Row (t-1) 
Column stratum  
Column (t-1) 
Row.Column stratum  
Treatment (t-1) 
Residual (t-1)(t-2) 
Total t2-1 

 

GenStat has a menu to produce randomized designs, and even show what the analysis will look 

like. For this use Stats > Design > Generate a Standard Design. Select Latin Square from the 

drop down list, name treatments and indicate their number. The design is often used for animal 

trials, where a number of animals are treated but the set of treatments is re-applied to the 

animals at different periods of time. Then you would name the rows and columns Animal and 

Period say. 
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Grain yield of three promising maize hybrids (A, B, D) and a check hybrid (C) set out in a 4×4 

Latin Square design, from Page 33 of G&G 

 Design Yield (t/ha)  
 Column Column  
 1 2 3 4 1 2 3 4 Row means 

1 B D C A 1.640 1.210 1.425 1.345 1.405 
2 C A D B 1.475 1.185 1.400 1.290 1.338 
3 A C B D 1.670 0.710 1.665 1.180 1.306 
4 D B A C 1.565 1.290 1.655 0.660 1.293 

Column means 1.588 1.099 1.536 1.119  
 

In fact, there doesn’t appear to be much difference in the row means, the variance for which is 

0.003. Each is a mean of 4 plot yields, so the Row m.s. in the ANOVA would be 4×0.003 = 0.010. 

(Note we are rounding off to 3 dp but precision occurs in the unseen decimals.) 

Column means are somewhat more varied, their variance is 0.069 and hence the Column m.s. 

in the ANOVA would be 4×0.069 = 0.276. 

To obtain Hybrid m.s. we need their means, which entails averaging the plot yields that 

received Hybrid A, etc: 

A B C D 
1.464 1.471 1.068 1.339 

 

The variance of these 4 means is 0.036, and so the Hybrid m.s. in the ANOVA would be  

4×0.036 = 0.142. 

The Residual m.s. in the ANOVA would be the variance of the t2 = 16 residuals, using  

(t-1)(t-2) = 6 as the divisor. 
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Analysis of variance 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Row stratum 3  0.03015  0.01005  0.47   
  
Column stratum 3  0.82734  0.27578  12.77   
  
Row.Column stratum 
Variety 3  0.42684  0.14228  6.59  0.025 
Residual 6  0.12958  0.02160     
  
Total 15  1.41392       
  
  

Tables of means 
  
Variate: Yield 
  
Grand mean  1.335  
  
 Variety  A  B  C  D 
   1.464  1.471  1.068  1.339 
  
  

Standard errors of differences of means 
Table Variety   
rep.  4   
d.f.  6   
s.e.d.  0.1039   
  
 

Least significant differences of means (5% level) 
Table Variety   
rep.  4   
d.f.  6   
l.s.d.  0.2543   

 

None of the three promising maize hybrids A, B or D differs from another (the 5% l.s.d. value is 

0.254), however all three are significantly different (at 5% at least) from the check maize variety 

D. Had you set up 3 simple comparisons as part of the ANOVA you would have the stronger 

statistical evidence. The P values for comparisons of each of the three hybrids with C are: 

A vs C (P=0.009), B vs C (P=0.008) and D vs C (P=0.040).  



100 | P a g e  
                                                                             ©Agro-Tech, Inc. and Statistical Advisory & Training Services Pty Ltd  

FURTHER READING 

For an introductory, practical and illustrative guide to design of experiments and data analysis 
we refer you to following book: 

Welham, S.J., S.A Gezan, S.J. Clark and A. Mead. 2015.  Statistical Methods in Biology: Design 
and Analysis of Experiments and Regression. CRC Press, Boca Rotan, FL. 

For introductory information on ANOVA & REML methods we refer you to the following 
manual: 

O’Neill, M.  2010. ANOVA & REML: A Guide to Linear Mixed Models in an Experimental Design 
Context.  Statistical Advisory & Training Services Pty Ltd. NSW, Australia.  www.stats.net.au 
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John Wiley and Sons. New York. 
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Appendix A.  Data sets from Statistical Procedures for Agricultural 

Research, 2nd Edition, Kwanchai A. Gomez and Arturo A. Gomez. 

Copyright © 1984 by John Wiley & Sons, Inc.   

CRD - page 14   
   

Treatment Rep Yield 
Dol-Mix (1 kg) 1 2537 
Dol-Mix (1 kg) 2 2069 
Dol-Mix (1 kg) 3 2104 
Dol-Mix (1 kg) 4 1797 
Dol-Mix  (2 kg) 1 3366 
Dol-Mix  (2 kg) 2 2591 
Dol-Mix  (2 kg) 3 2211 
Dol-Mix  (2 kg) 4 2544 
DDT + y-BHC 1 2536 
DDT + y-BHC 2 2459 
DDT + y-BHC 3 2827 
DDT + y-BHC 4 2385 

Azodrin 1 2387 
Azodrin 2 2453 
Azodrin 3 1556 
Azodrin 4 2116 

Dicecron-Boom 1 1997 
Dicecron-Boom 2 1679 
Dicecron-Boom 3 1649 
Dicecron-Boom 4 1859 
Dicecron-Knap 1 1796 
Dicecron-Knap 2 1704 
Dicecron-Knap 3 1904 
Dicecron-Knap 4 1320 

Control 1 1401 
Control 2 1516 
Control 3 1270 
Control 4 1077 
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RCB - page 26   
   

Treatment Rep Yield 
25 1 5113 
50 1 5346 
75 1 5272 

100 1 5164 
125 1 4804 
150 1 5254 
25 2 5398 
50 2 5952 
75 2 5713 

100 2 4831 
125 2 4848 
150 2 4542 
25 3 5307 
50 3 4719 
75 3 5483 

100 3 4986 
125 3 4432 
150 3 4919 
25 4 4678 
50 4 4264 
75 4 4749 

100 4 4410 
125 4 4748 
150 4 4098 
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Latin square - page 33   
    

Row Column Variety Yield 
1 1 B 1.64 
1 2 D 1.21 
1 3 C 1.425 
1 4 A 1.345 
2 1 C 1.475 
2 2 A 1.185 
2 3 D 1.4 
2 4 B 1.29 
3 1 A 1.67 
3 2 C 0.71 
3 3 B 1.665 
3 4 D 1.18 
4 1 D 1.565 
4 2 B 1.29 
4 3 A 1.655 
4 4 C 0.66 
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Split-plot - page 102    
Main plot = Nitrogen, Subplot = Variety, Replicates = 3 
Variety Nitrogen Rep Yield  

IR8 0 1 4430  
IR5 0 1 3944  

C4-63 0 1 3464  
Peta 0 1 4126  
IR8 0 2 4478  
IR5 0 2 5314  

C4-63 0 2 2944  
Peta 0 2 4482  
IR8 0 3 3850  
IR5 0 3 3660  

C4-63 0 3 3142  
Peta 0 3 4836  
IR8 60 1 5418  
IR5 60 1 6502  

C4-63 60 1 4768  
Peta 60 1 5192  
IR8 60 2 5166  
IR5 60 2 5858  

C4-63 60 2 6004  
Peta 60 2 4604  
IR8 60 3 6432  
IR5 60 3 5586  

C4-63 60 3 5556  
Peta 60 3 4652  
IR8 90 1 6076  
IR5 90 1 6008  

C4-63 90 1 6244  
Peta 90 1 4546  
IR8 90 2 6420  
IR5 90 2 6127  

C4-63 90 2 5724  
Peta 90 2 5744  
IR8 90 3 6704  
IR5 90 3 6642  

C4-63 90 3 6014  
Peta 90 3 4146  
IR8 120 1 6462  
IR5 120 1 7139  

C4-63 120 1 5792  
Peta 120 1 2774  
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IR8 120 2 7056  
IR5 120 2 6982  

C4-63 120 2 5880  
Peta 120 2 5036  
IR8 120 3 6680  
IR5 120 3 6564  

C4-63 120 3 6370  
Peta 120 3 3638  
IR8 150 1 7290  
IR5 150 1 7682  

C4-63 150 1 7080  
Peta 150 1 1414  
IR8 150 2 7848  
IR5 150 2 6594  

C4-63 150 2 6662  
Peta 150 2 1960  
IR8 150 3 7552  
IR5 150 3 6576  

C4-63 150 3 6320  
Peta 150 3 2766  
IR8 180 1 8452  
IR5 180 1 6228  

C4-63 180 1 5594  
Peta 180 1 2248  
IR8 180 2 8832  
IR5 180 2 7387  

C4-63 180 2 7122  
Peta 180 2 1380  
IR8 180 3 8818  
IR5 180 3 6006  

C4-63 180 3 5480  
Peta 180 3 2014  
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Strip-plot - page 110   
Horizontal factor = Nitrogen, Vertical factor = 
Variety 
Nitrogen Variety Rep Yield 

0 IR8 1 2373 
60 IR8 1 4076 

120 IR8 1 7254 
0 IR8 2 3958 

60 IR8 2 6431 
120 IR8 2 6808 

0 IR8 3 4384 
60 IR8 3 4889 

120 IR8 3 8582 
0 IR127-80 1 4007 

60 IR127-80 1 5630 
120 IR127-80 1 7053 

0 IR127-80 2 5795 
60 IR127-80 2 7334 

120 IR127-80 2 8284 
0 IR127-80 3 5001 

60 IR127-80 3 7177 
120 IR127-80 3 6297 

0 IR305-4-12 1 2620 
60 IR305-4-12 1 4676 

120 IR305-4-12 1 7666 
0 IR305-4-12 2 4508 

60 IR305-4-12 2 6672 
120 IR305-4-12 2 7328 

0 IR305-4-12 3 5621 
60 IR305-4-12 3 7019 

120 IR305-4-12 3 8611 
0 IR400-2-5 1 2726 

60 IR400-2-5 1 4838 
120 IR400-2-5 1 6881 

0 IR400-2-5 2 5630 
60 IR400-2-5 2 7007 

120 IR400-2-5 2 7735 
0 IR400-2-5 3 3821 

60 IR400-2-5 3 4816 
120 IR400-2-5 3 6667 

0 IR665-58 1 4447 
60 IR665-58 1 5549 

120 IR665-58 1 6880 
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0 IR665-58 2 3276 
60 IR665-58 2 5340 

120 IR665-58 2 5080 
0 IR665-58 3 4582 

60 IR665-58 3 6011 
120 IR665-58 3 6076 

0 Peta 1 2572 
60 Peta 1 3896 

120 Peta 1 1556 
0 Peta 2 3724 

60 Peta 2 2822 
120 Peta 2 2706 

0 Peta 3 3326 
60 Peta 3 4425 

120 Peta 3 3214 
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Split-split-plot - page 143    
Main plot = Nitrogen, Subplot = Management, Sub-subplot = Variety 

Management Variety Nitrogen Rep Yield 
Minimum V1 0 1 3.32 
Minimum V1 0 2 3.864 
Minimum V1 0 3 4.507 
Minimum V2 0 1 6.101 
Minimum V2 0 2 5.122 
Minimum V2 0 3 4.815 
Minimum V3 0 1 5.355 
Minimum V3 0 2 5.536 
Minimum V3 0 3 5.244 
Optimum V1 0 1 3.766 
Optimum V1 0 2 4.311 
Optimum V1 0 3 4.875 
Optimum V2 0 1 5.096 
Optimum V2 0 2 4.873 
Optimum V2 0 3 4.166 
Optimum V3 0 1 7.442 
Optimum V3 0 2 6.462 
Optimum V3 0 3 5.584 
Intensive V1 0 1 4.66 
Intensive V1 0 2 5.915 
Intensive V1 0 3 5.4 
Intensive V2 0 1 6.573 
Intensive V2 0 2 5.495 
Intensive V2 0 3 4.225 
Intensive V3 0 1 7.018 
Intensive V3 0 2 8.02 
Intensive V3 0 3 7.642 
Minimum V1 50 1 3.188 
Minimum V1 50 2 4.752 
Minimum V1 50 3 4.756 
Minimum V2 50 1 5.595 
Minimum V2 50 2 6.78 
Minimum V2 50 3 5.39 
Minimum V3 50 1 6.706 
Minimum V3 50 2 6.546 
Minimum V3 50 3 7.092 
Optimum V1 50 1 3.625 
Optimum V1 50 2 4.809 
Optimum V1 50 3 5.295 
Optimum V2 50 1 6.357 
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Optimum V2 50 2 5.925 
Optimum V2 50 3 5.163 
Optimum V3 50 1 8.592 
Optimum V3 50 2 7.646 
Optimum V3 50 3 7.212 
Intensive V1 50 1 5.232 
Intensive V1 50 2 5.17 
Intensive V1 50 3 6.046 
Intensive V2 50 1 7.016 
Intensive V2 50 2 7.442 
Intensive V2 50 3 4.478 
Intensive V3 50 1 8.48 
Intensive V3 50 2 9.942 
Intensive V3 50 3 8.714 
Minimum V1 80 1 5.468 
Minimum V1 80 2 5.788 
Minimum V1 80 3 4.422 
Minimum V2 80 1 5.442 
Minimum V2 80 2 5.988 
Minimum V2 80 3 6.509 
Minimum V3 80 1 8.452 
Minimum V3 80 2 6.698 
Minimum V3 80 3 8.65 
Optimum V1 80 1 5.759 
Optimum V1 80 2 6.13 
Optimum V1 80 3 5.308 
Optimum V2 80 1 6.398 
Optimum V2 80 2 6.533 
Optimum V2 80 3 6.569 
Optimum V3 80 1 8.662 
Optimum V3 80 2 8.526 
Optimum V3 80 3 8.514 
Intensive V1 80 1 6.215 
Intensive V1 80 2 7.106 
Intensive V1 80 3 6.318 
Intensive V2 80 1 6.953 
Intensive V2 80 2 6.914 
Intensive V2 80 3 7.991 
Intensive V3 80 1 9.112 
Intensive V3 80 2 9.14 
Intensive V3 80 3 9.32 
Minimum V1 110 1 4.246 
Minimum V1 110 2 4.842 
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Minimum V1 110 3 4.863 
Minimum V2 110 1 6.209 
Minimum V2 110 2 6.768 
Minimum V2 110 3 5.779 
Minimum V3 110 1 8.042 
Minimum V3 110 2 7.414 
Minimum V3 110 3 6.902 
Optimum V1 110 1 5.255 
Optimum V1 110 2 5.742 
Optimum V1 110 3 5.345 
Optimum V2 110 1 6.992 
Optimum V2 110 2 7.856 
Optimum V2 110 3 6.164 
Optimum V3 110 1 9.08 
Optimum V3 110 2 9.016 
Optimum V3 110 3 7.778 
Intensive V1 110 1 6.829 
Intensive V1 110 2 5.869 
Intensive V1 110 3 6.011 
Intensive V2 110 1 7.565 
Intensive V2 110 2 7.626 
Intensive V2 110 3 7.362 
Intensive V3 110 1 9.66 
Intensive V3 110 2 8.966 
Intensive V3 110 3 9.128 
Minimum V1 140 1 3.132 
Minimum V1 140 2 4.375 
Minimum V1 140 3 4.678 
Minimum V2 140 1 6.86 
Minimum V2 140 2 6.894 
Minimum V2 140 3 6.573 
Minimum V3 140 1 9.314 
Minimum V3 140 2 8.508 
Minimum V3 140 3 8.032 
Optimum V1 140 1 5.389 
Optimum V1 140 2 4.315 
Optimum V1 140 3 5.896 
Optimum V2 140 1 6.857 
Optimum V2 140 2 6.974 
Optimum V2 140 3 7.422 
Optimum V3 140 1 9.224 
Optimum V3 140 2 9.68 
Optimum V3 140 3 9.294 
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Intensive V1 140 1 5.217 
Intensive V1 140 2 5.389 
Intensive V1 140 3 7.309 
Intensive V2 140 1 7.254 
Intensive V2 140 2 7.812 
Intensive V2 140 3 8.95 
Intensive V3 140 1 10.36 
Intensive V3 140 2 9.896 
Intensive V3 140 3 9.712 
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Strip-split-plot - page 155    
Horizontal strip = Variety, Vertical strip = Nitrogen, Subplot = Planting 
method 

Variety Nitrogen 
Planting 
Method Rep Yield 

IR8 0 Broadcast 1 2373 
IR8 0 Broadcast 2 3958 
IR8 0 Broadcast 3 4384 
IR8 0 Transplanted 1 2293 
IR8 0 Transplanted 2 3528 
IR8 0 Transplanted 3 2538 

IR127-8-1-10 0 Broadcast 1 4007 
IR127-8-1-10 0 Broadcast 2 5795 
IR127-8-1-10 0 Broadcast 3 5001 
IR127-8-1-10 0 Transplanted 1 4035 
IR127-8-1-10 0 Transplanted 2 4885 
IR127-8-1-10 0 Transplanted 3 4583 

IR305-4-12-1-3 0 Broadcast 1 2620 
IR305-4-12-1-3 0 Broadcast 2 4508 
IR305-4-12-1-3 0 Broadcast 3 5621 
IR305-4-12-1-3 0 Transplanted 1 4527 
IR305-4-12-1-3 0 Transplanted 2 4866 
IR305-4-12-1-3 0 Transplanted 3 3628 
IR400-2-5-3-3-2 0 Broadcast 1 2726 
IR400-2-5-3-3-2 0 Broadcast 2 5630 
IR400-2-5-3-3-2 0 Broadcast 3 3821 
IR400-2-5-3-3-2 0 Transplanted 1 5274 
IR400-2-5-3-3-2 0 Transplanted 2 6200 
IR400-2-5-3-3-2 0 Transplanted 3 4038 

IR665-58 0 Broadcast 1 4447 
IR665-58 0 Broadcast 2 3276 
IR665-58 0 Broadcast 3 4582 
IR665-58 0 Transplanted 1 4655 
IR665-58 0 Transplanted 2 2796 
IR665-58 0 Transplanted 3 3739 

Peta 0 Broadcast 1 2572 
Peta 0 Broadcast 2 3724 
Peta 0 Broadcast 3 3326 
Peta 0 Transplanted 1 4535 
Peta 0 Transplanted 2 5457 
Peta 0 Transplanted 3 3537 
IR8 60 Broadcast 1 4076 
IR8 60 Broadcast 2 6431 
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IR8 60 Broadcast 3 4889 
IR8 60 Transplanted 1 3085 
IR8 60 Transplanted 2 7502 
IR8 60 Transplanted 3 4362 

IR127-8-1-10 60 Broadcast 1 5630 
IR127-8-1-10 60 Broadcast 2 7334 
IR127-8-1-10 60 Broadcast 3 7177 
IR127-8-1-10 60 Transplanted 1 3728 
IR127-8-1-10 60 Transplanted 2 7424 
IR127-8-1-10 60 Transplanted 3 5377 

IR305-4-12-1-3 60 Broadcast 1 4676 
IR305-4-12-1-3 60 Broadcast 2 6672 
IR305-4-12-1-3 60 Broadcast 3 7019 
IR305-4-12-1-3 60 Transplanted 1 4946 
IR305-4-12-1-3 60 Transplanted 2 7611 
IR305-4-12-1-3 60 Transplanted 3 6142 
IR400-2-5-3-3-2 60 Broadcast 1 4838 
IR400-2-5-3-3-2 60 Broadcast 2 7007 
IR400-2-5-3-3-2 60 Broadcast 3 4816 
IR400-2-5-3-3-2 60 Transplanted 1 4878 
IR400-2-5-3-3-2 60 Transplanted 2 6928 
IR400-2-5-3-3-2 60 Transplanted 3 4829 

IR665-58 60 Broadcast 1 5549 
IR665-58 60 Broadcast 2 5340 
IR665-58 60 Broadcast 3 6011 
IR665-58 60 Transplanted 1 4646 
IR665-58 60 Transplanted 2 5006 
IR665-58 60 Transplanted 3 4666 

Peta 60 Broadcast 1 3896 
Peta 60 Broadcast 2 2822 
Peta 60 Broadcast 3 4425 
Peta 60 Transplanted 1 4627 
Peta 60 Transplanted 2 4461 
Peta 60 Transplanted 3 4774 
IR8 120 Broadcast 1 7254 
IR8 120 Broadcast 2 6808 
IR8 120 Broadcast 3 8582 
IR8 120 Transplanted 1 6661 
IR8 120 Transplanted 2 6353 
IR8 120 Transplanted 3 7759 

IR127-8-1-10 120 Broadcast 1 7053 
IR127-8-1-10 120 Broadcast 2 8284 
IR127-8-1-10 120 Broadcast 3 6297 
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IR127-8-1-10 120 Transplanted 1 6440 
IR127-8-1-10 120 Transplanted 2 7648 
IR127-8-1-10 120 Transplanted 3 5736 

IR305-4-12-1-3 120 Broadcast 1 7666 
IR305-4-12-1-3 120 Broadcast 2 7328 
IR305-4-12-1-3 120 Broadcast 3 8611 
IR305-4-12-1-3 120 Transplanted 1 8632 
IR305-4-12-1-3 120 Transplanted 2 7101 
IR305-4-12-1-3 120 Transplanted 3 7416 
IR400-2-5-3-3-2 120 Broadcast 1 6881 
IR400-2-5-3-3-2 120 Broadcast 2 7735 
IR400-2-5-3-3-2 120 Broadcast 3 6667 
IR400-2-5-3-3-2 120 Transplanted 1 6545 
IR400-2-5-3-3-2 120 Transplanted 2 9838 
IR400-2-5-3-3-2 120 Transplanted 3 7253 

IR665-58 120 Broadcast 1 6880 
IR665-58 120 Broadcast 2 5080 
IR665-58 120 Broadcast 3 6076 
IR665-58 120 Transplanted 1 6995 
IR665-58 120 Transplanted 2 4486 
IR665-58 120 Transplanted 3 6564 

Peta 120 Broadcast 1 1556 
Peta 120 Broadcast 2 2706 
Peta 120 Broadcast 3 3214 
Peta 120 Transplanted 1 5374 
Peta 120 Transplanted 2 7218 
Peta 120 Transplanted 3 6369 
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